
Programming Cognitive Agents in Goal

© Koen V. Hindriks

June 21, 2021



Contents

Preface 4

1 Cognitive Agents & Environments 6
1.1 Environments and Controllable Entities . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Cognitive Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 A Simple Chat Agent 11
2.1 The GOAL Agent Programming Language . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 An “Hello World” Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Creating a Multi-Agent System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.4 A Cognitive “Hello World” Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 Adding an Event Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.6 Adding an Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.7 A Simple Script Printing Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Inspecting Cognitive States 22
3.1 Representing Knowledge, Beliefs and Goals . . . . . . . . . . . . . . . . . . . . . . 22

3.1.1 Example Environment: The Blocks World . . . . . . . . . . . . . . . . . . . 22
3.1.2 Creating a Cognitive State: Use Clauses . . . . . . . . . . . . . . . . . . . . 26

3.2 Inspecting an Agent’s Cognitive State . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.1 Basic State Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 Cognitive State Queries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.3 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Action Specifications 34
4.1 Action Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1.1 Pre-conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.1.2 Post-conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.1.3 Updating an Agent’s Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Internal Actions Provided in the Language . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.4 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 Cognitive Decision-Making Agents 44
5.1 Solving Blocks World Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Decision Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 Combining Everything in a Module . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4 Defining Agents in a Multi-Agent Program . . . . . . . . . . . . . . . . . . . . . . 48
5.5 Executing an Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

1



CONTENTS 2

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

6 Environments: Actions & Sensing 51
6.1 Types of Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
6.2 Agents, Environments, and MAS Files . . . . . . . . . . . . . . . . . . . . . . . . . 52

6.2.1 Environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2.2 Agent Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
6.2.3 Launching Agents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.3 The Blocks World with Two Agents . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.4 Processing Percepts and the Event Module . . . . . . . . . . . . . . . . . . . . . . 59
6.5 The Execution Cycle of an Agent . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
6.6 The Tower World . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.6.1 Specifying Durative Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.6.2 Percepts in the Tower World . . . . . . . . . . . . . . . . . . . . . . . . . . 66

6.7 Performing Durative Actions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.8 Deciding to Perform a Durative Action . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.8.1 Creating Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.8.2 Deciding What to Do in the Tower World . . . . . . . . . . . . . . . . . . . 68
6.8.3 Reconsidering Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.9 Environments and Observability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.10 Percept Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.12 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.13 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

7 Modules 74
7.1 Rule Evaluation Order . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7.2 Using Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

7.2.1 Entering a Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.2.2 Controlling When to Exit a Module . . . . . . . . . . . . . . . . . . . . . . 77

7.3 Creating Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
7.4 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

8 Communicating Agents 83
8.1 Example: The Coffee Factory Multi-Agent System . . . . . . . . . . . . . . . . . . 83
8.2 Communication: Send Action and Mailbox . . . . . . . . . . . . . . . . . . . . . . 85

8.2.1 The send action . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.2.2 Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.3 Moods of Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
8.4 Agent Selectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

8.4.1 send action syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
8.5 Channel Selectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.6 The Coffee Factory MAS Again . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
8.7 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.8 Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

8.8.1 Milk cow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

9 The Design of Agent Programs 94
9.1 Design Steps: Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
9.2 Guidelines for Designing an Ontology . . . . . . . . . . . . . . . . . . . . . . . . . 95

9.2.1 Prolog as a Knowledge Representation Language . . . . . . . . . . . . . . . 95
9.2.2 Knowledge, Beliefs, and Goals . . . . . . . . . . . . . . . . . . . . . . . . . 96

9.3 Action Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97



CONTENTS 3

9.3.1 Action Specifications Should Match with the Environment Action . . . . . 97
9.3.2 Action Specifications for Non-Environment Actions . . . . . . . . . . . . . . 97

9.4 Readability of Your Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
9.4.1 Document Your Code: Add Comments! . . . . . . . . . . . . . . . . . . . . 98
9.4.2 Introduce Intuitive Labels: Macros . . . . . . . . . . . . . . . . . . . . . . . 99

9.5 Structuring Your Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.5.1 All Modules Except for the Main Module Should Terminate . . . . . . . . . 99
9.5.2 Group Rules of Similar Type . . . . . . . . . . . . . . . . . . . . . . . . . . 99
9.5.3 Small Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

9.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

10 Automated Testing of Agents 102
10.1 Modules as Basic Unit for Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
10.2 Test Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
10.3 Test Templates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

10.3.1 P-templates: Failures in Percept Processing . . . . . . . . . . . . . . . . . . 107
10.3.2 G-templates: Failures in Goal Management . . . . . . . . . . . . . . . . . . 107
10.3.3 A-templates: Failures in Action Selection . . . . . . . . . . . . . . . . . . . 108

10.4 Test Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
10.5 Debugging, Testing, and Fault Localisation . . . . . . . . . . . . . . . . . . . . . . 111
10.6 Notes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112



Preface

Goal is a rule-based programming language for programming cognitive agents that interact
with an environment and with each other. Agents receive information about their environment
through percepts and can request the environment to perform actions. Agents are part of
a multi-agent system and can exchange information between themselves through messages.
Cognitive agents maintain a cognitive state that consists of the knowledge, beliefs, and goals
of the agent which are represented in some knowledge representation (KR) language. Goal
promotes a view of agent-oriented programming as programming with cognitive states. These
states have additional structure compared to more traditional database programming and are very
different from states in most other programming languages such as object-oriented programming.
Cognitive agents are autonomous decision-making agents that derive their choice of action
from their beliefs and goals.

The language offers a rich and powerful set of programming constructs and features for writing
agent programs. The platform developed for running these agent programs also provides sup-
port for connecting multi-agent systems to environments such as simulators, games, and robots
and for running multiple cognitive agents in a distributed computing environment. Agents can be
connected to various environment where they control entities such as grippers for moving blocks,
cars in traffic simulators, or bots in real-time games. There is no limit to the possibilities here and
a diverse set of environments has been made available that can be used for programming cognitive
agents (see Chapter 1 for examples).

The Goal agent programming language has been significantly revised to address some of the
shortcomings of the initial version of the language. The basic language elements are the same
but the grammar has been changed to address issues related to dependencies between various
elements used in the language. For example, the language now requires that a programmer makes
dependencies on the KR and the actions available in an environment explicit. This programming
guide has been revised accordingly to reflect these changes and introduces the revised language. In
addition, a testing framework is now available for agent programs, developed by Vincent Koeman.
A completely new chapter is dedicated to discussing this framework.

Goal has been extensively used at the Delft University of Technology in education and, besides
Delft, has been used in education in many other places at both the Bachelor and Master level.
Educational materials are available and can be requested from the author. Several assignments
have been developed over time that ask students to program agents for simple environments such
as: the classic Blocks World environment or a dynamic variant of it where users can interfere,
the Wumpus World environment as described in [37], and more challenging environments such as
an elevator simulator, the Blocks World for Teams [29], and the real-time StarCraft gaming
environment. This last environment has been used in a large student project with more than
200 bachelor students. Students programmed a multi-agent system to control dozens of StarCraft
units, which were run against each other in a competition at the end of the project.

The language has evolved over time and we continue to develop more advanced tooling sup-
port for engineering and debugging multi-agent systems. As we are continuously developing and
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improving Goal we suggest the reader to regularly check the Goal website for updates:

https://goalapl.dev

This website also contains installation instructions for the Goal plugin for the Eclipse environ-
ment.

In order to be able to further improve the language Goal and its development environment,
we very much appreciate your feedback. We hope to learn more from your experience with working
with Goal. Please do not hesitate to contact us at goal@ii.tudelft.nl and let us know what you
think! In order to make the most out of this programming guide, as is the typical advice when
learning any programming language, the reader is advised to practice and do the exercises made
available in this guide. A final note: this guide is about the programming language and explains
how to write agent programs but does not explain the development environment. Please consult
the User Manual [31] to make the most out of the extensive support integrated into Eclipse for
developing agent programs.

Koen V. Hindriks, Delft, March, 2018
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Chapter 1

Cognitive Agents & Environments

Before we will write a simple chat agent program in Chapter 2, we first introduce the basic pro-
gramming model of cognitive agents that interact with an environment. Agents control
entities in environments and decide what these entities do. The core of agent-oriented pro-
gramming is a model of decision-making where agents make decisions based on their beliefs and
goals. We call agents that derive their choice of action from their beliefs and goals cognitive
agents. In this chapter we identify the key components and capabilities of a cognitive agent that
enable it to effectively interact with its environment.

Blocks World 
Tic Tac Toe 

Vacuum World 

Nao Robot 
Emohawk Virtual Environment 

Unreal Tournament 

Starcraft 

Traffic Simulator 

Figure 1.1: Example Environments

1.1 Environments and Controllable Entities
Environments can be almost anything ranging from toy worlds, grid worlds [21], simulators, games,
virtual environments, to physical robots. Figure 1.1 illustrates some example environments. A
classic example from artificial intelligence is the Blocks World [37]. This is a simple world (or,
environment) that allows blocks to be moved by means of a gripper. The vacuum world is a grid
world where virtual robots need to remove dust from the cells in the grid. StarCraft and Unreal
Tournament are examples of well-known real-time strategy games where a player needs to battle
with its opponents. The Nao robot is a well-known physical humanoid robot.
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CHAPTER 1. COGNITIVE AGENTS & ENVIRONMENTS 7

The environments that agents interact with consist among other things of controllable enti-
ties that can perform actions in the environment. Examples are the gripper in the Blocks World, a
bot, character, or unit in a game, or a robot that acts in the real world. An agent that is connected
to a controllable entity in an environment can control the actions that the entity performs. It
will also see what the entity sees in the environment by receiving percepts. Figure 1.2 illustrates
the connection between a cognitive agent and an entity. A useful way of thinking of a controllable
entity is that it is the body of the cognitive agent that controls it. You can think of the cognitive
agent as the mind that controls the body. This means that the agent makes the decisions about
which action the entity should perform. Note that we do not picture the cognitive agent as part
of its environment but rather think of the agent being connected to an (entity in an) environment.

Cognitive 
Agent 

Environment 
action 

percept 

entity 

entity 

entity 

entity 

Figure 1.2: Cognitive Agent Connected to Entity in Environment

It is very important to realize that an agent and the environment it interacts with are separate
processes. Things may happen in an agent’s environment while the agent is deciding about what
to do next. Only in a very special class of environments such as the classic Blocks World nothing
changes if an agent does not decide to make the gripper move a block. In other environments,
things are not fully controlled by the agent. For example, dust and dirt may (re)appear in the
vacuum cleaning world in cells which the agent has cleaned before. The difficulty for programming
such an agent is that it may also not perceive these changes and needs to revisit cells it already
visited. In two or more player games such as Tic Tac Toe game play depends on the agent’s
opponent. In real-time strategy games, moreover, the time an agent takes to make a decision
matters.

1.2 Cognitive Agents
A cognitive agent has three core abilities that enable it to control and interact effectively with
an entity in an environment. The first ability is event processing. This enables the agent to
process events such as percepts that it receives from the environment and messages that agents
exchange between each other to update what it believes about its environment and other agents.
Events may also prompt an agent to update what it wants. The second ability is representing
knowledge. This enables the agent to maintain a model of the environment, which is essential
for keeping track of the state of the environment. It also enables the agent to reason about its
environment and to represent what it wants to achieve. The third ability is decision-making.
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This enables the agent to decide on what to do next and select an action. These core abilities
relate to important areas in artificial intelligence.

Computer vision, for example, is needed to process raw camera images (one type of percept)
that a robot captures into symbolic knowledge. We will take this process of extracting knowledge
from what a robot sees for granted in the remainder. One reason for doing so is that in games
and other virtual environments the problem of knowledge extraction is largely absent and the task
that remains is percept processing in the sense of updating an agent’s state. We will therefore
not be concerned with how sensor output is processed to make sense out of information obtained
through sensors. What is important in this context is to realize that the percepts that an agent
receives usually only inform it about what the entity that the agent controls senses or perceives,
e.g., sees, feels, etcetera.

For representing knowledge, we will, however, directly rely on the area of knowledge repre-
sentation (KR). This area in artificial intelligence concerns itself with languages and techniques
that enable a system to represent and reason about something. A cognitive agent needs a knowl-
edge representation language for representing and reasoning about the environment it interacts
with. We will use a knowledge representation language for representing an agent’s percepts,
knowledge, beliefs, goals, and messages that agents exchange but also for specifying the pre- and
post-conditions of actions. In the next chapter we will learn how the language Prolog can be used
to represent the state of a cognitive agent.

Cognitive State 

percepts 

messages 

knowledge 

beliefs 

goals 

percepts 

messages 

Event 
Processing 

Figure 1.3: Cognitive State

A cognitive state may consist of various components but typically includes components
for representing events, informational, and motivational components. Events include percepts and
messages. Informational components contain the knowledge and beliefs of an agent. Knowledge
here refers to concept definitions and domain information which is and will remain true no matter
what. Beliefs refer to information that may change over time. Motivational components represent
what the agent wants to do or achieve. A motivational component could represent e.g., the plans
or intentions of an agent. We will use a motivational component that represents the goals that
the agent wants to achieve. Goals are states of the environment that the agent wants to realize.

Finally, decision-making is related to automated planning. This area in artificial intelligence
concerns itself with languages and techniques for representing and solving planning problems. A
plan is a sequence of actions that achieves a goal of the agent. In order to find such a plan a
planner needs information about what the agent believes is the initial situation and the goal(s)
that the agent wants to achieve. Action specifications are important input needed to find a
plan. Such specifications inform an agent when an action can be performed and what the effects
of performing an action are. This is important knowledge that a cognitive agent needs when it
makes decisions. We will therefore borrow the technique of specifying actions from planning and
incorporate action specifications as a component in our agent programs.
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1.3 Summary
The purpose of this chapter was to provide a brief introduction into cognitive agents that interact
with an environment and to identify the key components that a cognitive agent needs to interact
effectively with this environment. An agent is connected to a controllable entity that it can tell
what to do and from which it receives percepts about the environment.

What makes an agent a cognitive agent is that it has a cognitive state that consists of:

• percepts that the agent receives from the environment and inform the agent about what
the entity it controls perceives;

• messages that the agent receives from other agents;

• knowledge including domain information and conceptual definitions that are true always;

• beliefs which keep track of the state of the environment and change over time;

• goals which are states of the environment that the agent wants to realize.

A cognitive agent has three core abilities to effectively interact with its environment:

• event processing which allows an agent to update its beliefs and goals based on the percepts
and messages it receives;

• representing knowledge which allows an agent to represent and reason with its knowledge,
beliefs, and goals;

• decision-making which allows an agent to select an action to perform next based on its
current beliefs and goals.

Finally, an action specification informs an agent about when an action can be performed and
what its effects will be which is important and useful information needed for decision-making.

1.4 Notes
Although we have hinted at the possibility to construct systems of multiple cognitive agents, we
have left the topic of programming multi-agent systems for later. Because a basic specification
of a multi-agent system is also needed for running a single agent, the next chapter will already
introduce the basic elements of a multi-agent system.

A warning is in place with regards to the use of terminology. We call agents cognitive because
their state consists of knowledge, beliefs, and goals. The use of these labels is useful because
it suggests a basic understanding of what the components of an agent’s state are. Similarly,
describing what an agent does when it selects actions as the ability to make decisions helps us
understand intuitively what a cognitive agent program does. It is important to emphasize, however,
that by using these labels to describe agents we do not want to suggest any strong correspondence
of the components or abilities of these agents with similar human cognitive functions. In other
words, we do not claim any psychological realism for our cognitive agents.
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1.5 Exercises
Exercise 1.5.1

Select two environments of your own choice and for each of these do the following:

• identify a controllable entity in the environment;

• list the percepts you think the entity might send to an agent that it is connected with;

• list the actions you think that entity can perform in the environment;

• for each action specify when the action can be performed (i.e., which conditions must
hold) and what the effects of successfully performing the action will be.

Exercise 1.5.2
For the entities that you identified in the previous exercise, specify a list of possible goals
that an agent that controls those entities might have.

Exercise 1.5.3
In decision theory, the notion of utility is used to represent the preferences of an agent.
In essence, what the agent prefers most is what it would like to obtain most. Use the
wikipedia item https://en.wikipedia.org/wiki/Intelligent_agent to identify
two key differences between a goal-based and a utility-based agent.

Exercise 1.5.4
Machine learning is also an important area in artificial intelligence. Mention two environ-
ments where the ability to learn would be useful for an agent and explain why you think so.

Exercise 1.5.5
Read the wikipedia item https://en.wikipedia.org/wiki/Memory about human
memory. Discuss the differences between how a cognitive agent and how a human remembers
by comparing the three different kinds of human memories (sensory, short-term, and long-
term) with the cognitive state of an agent.

https://en.wikipedia.org/wiki/Intelligent_agent
https://en.wikipedia.org/wiki/Memory


Chapter 2

A Simple Chat Agent

In this chapter, we write our first agent program in the programming language Goal. We start
with a very simple agent that says “Hello, world!”. Similar to “Hello world” programs written
in other languages, the agent outputs “Hello, world!” in the console. We will introduce the core
notions of the programming language. After having created the simple “Hello, world!” agent, we
continue with a walkthrough of the most important elements of the Goal language. We show
how the “Hello World” agent can be made to print “Hello, world!” exactly 10 times by using its
beliefs to keep track of the number of times it already said hello. Finally, we rewrite this agent
and turn it into a simple script printing agent. At the end of the chapter, you should have a basic
understanding of the type of agent programs that you can write in Goal.

2.1 The GOAL Agent Programming Language
Goal is a rule-based programming language. Rules are condition-action rules that enable
the agent to select an action. The rule if true then print("Hello, world!") selects
the action to print “Hello, world!”, for example. We briefly introduce the main elements of the
language. An agent program consists of a collection of files that each serve a different purpose.
First, a multi-agent system (MAS) file (.mas2g) is needed to launch and run an agent system.
The other files correspond with the basic components and abilities identified in the previous
chapter. Knowledge representation (KR) files are needed for representing knowledge and to create
the initial cognitive state of an agent, i.e., its knowledge, beliefs, and goals. In our case we will use
Prolog (.pl files). Action specification files (.act2g) are needed to inform the agent about the
actions it can perform. Finally, module files (.mod2g) that contain rules are needed to program
the event processing and decision-making of an agent.

2.2 An “Hello World” Agent
All agents are created as members of a multi-agent system. The first step in writing our “Hello
World” agent therefore is creating a MAS file. We assume you have started the Goal platform
and that you know how to create a new MAS project.1 Create a MAS project with the name
HelloWorld. This will automatically create a MAS file with a mas2g extension. Open this file.
You should see a template with an empty launch policy section. Complete it to make it look
exactly like:

launchpolicy{
launch helloWorldAgent.

}

1See the User Guide for the Goal Eclipse plugin [31]. A new MAS file is automatically created when you create
a new Goal project in Eclipse. This file is instantiated with a minimal template which you will need to complete.

11
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The MAS file will complain that the agent referred to is missing. We need to add an agent
definition to create an agent named helloWorldAgent and to inform the system which modules
it should use to create the agent. Do so by adding the following code before the launch section in
the MAS file:

define helloWorldAgent as agent {

}

An agent definition specifies a name for the agent and consists of a definition section that
specifies which module files should be used to create the agent. In order to complete the agent
definition above, we need to add at least one use clause. A use clause in an agent definition must
refer to a module file that should be used to create the agent. Complete the definition and make
it look exactly like:

define helloWorldAgent as agent {
use helloWorld as main module.

}

The definition above tells the system to use a module called helloWorld.mod2g as main
module when creating the agent called helloWorldAgent. Note that the mod2g extension
does not need to be specified. The main module of an agent contains the rules for decision-making
of that agent. Modules are the basic components that agents are made of. Another way of saying
this is that an agent is a set of modules. The most important module that an agent uses to decide
what to do next is called the main module.

We have not created the module file referenced yet and now need to do so. Save the MAS file
and create a module file named helloWorld.mod2g; you may want to check out the Goal User
Manual on how to do this. If not yet open, open the module file. You should see a module called
helloWorld with an empty program section. Complete it to make it look exactly like:

use dummy as knowledge.
exit=always.

module helloWorld {
if true then print("Hello, world!").

}

The first line above is a so-called use clause that indicates that the file dummy should be used
to initialize the agent’s knowledge. The extension of this file is left implicit and is used to infer
which KR language will be used by the agent. For example, a .pl file extension indicates that
Prolog will be used. The second line contains an exit condition. The exit condition always
means that the module is immediately exited after executing it, i.e., it will be executed only once.

We are almost ready to run the agent but need to fix reference to the missing dummy file. Do
so by creating an empty dummy.pl file, save it, and, if the file is open, close it. We need some
KR file to tell the system which KR language is used. As we do not need any predicates for our
very basic first program, we use the empty Prolog file dummy.pl to indicate that we want to use
Prolog. Now we are ready to launch the agent. Run the agent by launching the MAS using the
Run button (if you don’t know how, check out the User Manual). Amongst other output, you
should see the following in the Console area:

[helloWorldAgent] Hello, world!
...
agent ’helloWorldAgent’ terminated successfully.

You have successfully created your first agent program! If your agent did not terminate, you
may have forgotten to add the exit condition after the KR use clause.
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2.3 Creating a Multi-Agent System
A MAS file is used to set up a new MAS project and specifies which files are needed for creating the
multi-agent system. You can view a MAS file as a recipe for building and launching a multi-agent
system.

We will now program another agent that is created from a different module file. To get started,
within the same project, create a new, second MAS file and name it HelloWorld10x.

Any MAS file must have at least one agent definition and a non-empty launch policy section.
A launch policy tells the platform when to create and launch an agent. We have a single agent def-
inition as we only want to create a single agent. We will call our agent again helloWorldAgent
but use a different module called helloWorld10x as main module. To create this module,
copy-paste the helloWorld.mod2g file and name it helloWorld10x.mod2g. Also add the
following agent definition to the MAS file and save the MAS:

% Simple Hello World agent that prints "Hello, world!" message 10 times.
define helloWorldAgent as agent {

use helloWorld10x as main module.
}

Note that even if we only have a single agent definition we need to include this definition in a
MAS file. The reason is that only a MAS file includes all the relevant information that is needed to
build and launch the agent. Also note that comments can be added using the % sign. To complete
our MAS file we need to add a launch policy. A launch policy specifies when to create an agent.
Because we want to create our agent immediately when the MAS is created, in our case the launch
policy section consists of a single instruction to launch our “Hello World” agent. Make sure the
launch policy in the MAS file looks as follows.

launchpolicy{
launch helloWorldAgent.

}

The name helloWorldAgent directly following the launch command is the name of the
agent definition that will be used to create the agent. Agents referenced in a launch policy must
have a corresponding agent definition in the same MAS file.

2.4 A Cognitive “Hello World” Agent
We will now extend our basic “Hello World” agent. Our aim will be to write a new agent that says
“Hello, world!” exactly 10 times. To achieve this we will use a distinguishing feature of cognitive
agents in Goal. Cognitive agents can have goals and be programmed so as to make their main
purpose in live the realization of these goals. We will use this feature to tell the agent it has a
goal to print “Hello, world!” 10 times. There are many ways to do so but the key issue that we
need to decide on is how to represent this goal. We will use a simple way for representing the goal
and use a counter that keeps track of the number of times the agent has outputted something to
the console. To represent the counter we introduce the predicate nrOfPrintedLines/1 with a
single argument. We can use this predicate to create the simple fact nrOfPrintedLines(10)
to represent the agent’s goal. In order to be able to use this predicate we need to declare it. To
this end, now create a new Prolog file counter and add the following declaration to it:

% Declaration of a predicate for counting the number of printed lines.
:- dynamic nrOfPrintedLines/1.
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This time we want our agent to base its decision to print “Hello, world!” on its goal to print
this line 10 times. To do so we need to modify the rule in the module that our previous agent used.
Rules for making decisions are more or less straightforward translations of rules we would think of
when we would tell or explain someone what to do. Our “Hello World” agent, for example, should
print “Hello, world!” if it wants to. That is, if the agent has a goal to print a number of lines, then
it should print “Hello, world!”. Rules of a Goal agent have exactly the same if...then...
form. Now open and make the following changes in the module file helloWorld10x.mod2g:

• Replace the reference dummy in the use clause with counter; we need counter here
because we want to use nrOfPrintedLines/1 and need to declare it before we can use it.

• Remove the exit condition exit=always; we need to remove it because we want to execute
the module more than once.

• Replace the rule we copied into the module helloWorld10x by the one listed below.

You should now have a module that looks like:

use counter as knowledge.

module helloWorld10x {
if goal( nrOfPrintedLines(10) ) then print("Hello, world!").

}

The if is followed by a condition that states that the agent has a goal nrOfPrintedLine(10),
which is exactly the initial goal that we specified above. The goal operator checks whether
the agent has a particular goal. Below we will use the operator bel for inspecting the beliefs
of an agent. The second part of the rule from then on tells the agent to perform the action
print("Hello, world!") if the condition holds.

To keep track of how many times a line has been printed we will initialize the agent’s beliefs
with the fact nrOfPrintedLines(0) and to set its initial goal of printing 10 lines we will
initialize the agent’s goals with the fact nrOfPrintedLines(10). In order to do so, we will
create a new module that we will use to initialize the agent’s state. We will write one rule that
adds the belief and a second rule that adds the goal to the module. Now create a new module and
name it initCounter and make sure it looks exactly like:

use counter as knowledge.

module initCounter {
if true then insert( nrOfPrintedLines(0) ).
if true then adopt( nrOfPrintedLines(10) ).

}

As before, because we use the nrOfPrintedLines predicate, we declare it by means of a
use clause at the beginning of the module. We reuse the counter file introduced above for this.
The module’s program section consists of two rules. The first rule tells the agent to insert the
fact nrOfPrintedLines(0) into its beliefs. The second rule tells the agent to adopt a goal
nrOfPrintedLines(10). Because we will use this module as an init module, the rules will
be applied before all other rules. As a result, the belief and goal are inserted into the initial state
that is created when the agent has just been launched.

The states of a cognitive agent are very different from the states of other programs such as a
Java program. Agent states consist of facts, and possibly also logical rules as we will see later,
instead of assignments to variables. Our agent maintains two different databases of facts. One
database called the goal base consists of things the agent wants to achieve. The other database
is called the belief base and consists of facts that the agent believes are true (now). The fact
that Goal agents have a belief and goal base is the main reason for calling them cognitive agents.
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Our “Hello World” agent can derive decisions on what to do next from its initial goal to print a
number of lines to the console and its belief that it did not print any lines yet.

To make sure that the agent will actually use the initCounter module for initialization we
still need to add it to the agent definition. Add a use clause for this module to the agent definition
in the helloWorld10x MAS file:

% Simple Hello World agent that prints "Hello, world!" message 10 times.
define helloWorldAgent as agent {

use initCounter as init module.
use helloWorld10x as main module.

}

Let’s see what happens if we run this version of our agent. Launch the MAS in debug mode
(check the User Guide), start the agent, pause the agent after a second or so, and inspect the
console. What you will see is not exactly what we wanted our agent to do. Instead of performing
the print action exactly 10 times it does not stop and keeps on printing messages. One reason
for this is that we removed the exit condition in the module helloWorld10x and this module
is used as main module. The main module does not terminate if no exit condition is specified; by
default the exit condition of this module is exit=never. It should no longer come as a surprise
therefore that the agent does not terminate itself. Moreover, because the agent did not update
its beliefs in order to keep track of how many times it performed the action it is also not able to
check that it achieved its goal! Inspect the agent’s beliefs by means of the Introspector (check the
User Guide) to see that the initial beliefs of the agent have not been changed. You should see that
the agent still believes that it printed 0 lines.

Exercise 2.4.1
Replace the first rule in the module initCounter with a rule that inserts the fact
nrOfPrintedLines(10). Will the agent still perform any print actions? Check your
answer by running the modified agent and inspecting its state using the Introspector. (After
finishing this exercise, make sure you undo your changes before you continue.)

2.5 Adding an Event Module
As we saw, the agent did not update its beliefs every time that it performed the print action.
We can make the agent do so by making it respond to the event that it performed an action.
An agent can respond to events such as the event of receiving a percept or receiving a message.
An agent can also react to the event that it performed an action by using a module for event
processing. Every time that an agent performs an action it will call this module. The main
function of a module that is used for event processing should be to update the agent’s state after
performing an action. Usually, performing an action will change an agent’s environment and the
beliefs of the agent should be updated to reflect this. As a rule you should remember that rules for
processing events should be put in a separate module for event processing. Create a new module
called updateCounter and add the following use clause and rule to it so that the module looks
exactly like:

use counter as knowledge.

module updateCounter {
if bel( nrOfPrintedLines(Count), NewCount is Count + 1 )

then delete( nrOfPrintedLines(Count) ) + insert( nrOfPrintedLines(NewCount) ).
}

As before, the use clause is needed to declare the predicate nrOfPrintedLines and a rule
must be added to the module’s program section. The bel operator in the rule’s condition is
used to inspect, or query in database terms, the agent’s current beliefs to find out what we need
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to remove from that base. The comma ‘,’ is Prolog notation for “and” and is used to inspect
the current belief nrOfPrintedLines(Count) of the agent and to increase the current Count
with 1 to obtain NewCount. The delete action removes the old information and, thereafter,
the insert action is performed to insert the updated information into the belief base. The +
operator is used for combining one or more actions; actions combined by + are performed in the
order they appear.

Also note the use of NewCount and Count in the rule. These are Prolog variables. You can
tell so because they start with a capital letter as usual in Prolog (any identifier starting with a
capital is a variable in Prolog). Variables are used to retrieve concrete instances from facts from
the agent’s belief base (when inspecting that base). For example, given that the belief base of the
agent contains the following fact:

nrOfPrintedLines(1246).

performing a query with the condition of the rule would associate the variable Count with 1246
and the variable NewCount with 1247. As a result all occurrences of these variables in the rule
will be instantiated and we would get the instantiated rule:

if bel( nrOfPrintedLines(1246), 1247 is 1246 + 1 )
then delete( nrOfPrintedLines(1246) ) + insert( nrOfPrintedLines(1247) ) .

The fact that the rule condition could be instantiated to something that holds also tells us
that the rule is applicable. Because the delete and insert actions can always be performed,
applying the rule would update the belief base as desired.

We will make one more change to our “Hello World” agent before we run it again. As we
noticed, by default a main module never terminates but we would like our agent to quit when it
has achieved its goal. Therefore, now add an exit condition to the module helloWorld10x to
quit the module when the agent has no more goals after the use clause in the module:

exit = nogoals.

Finally, we need to add the module updateCounter to the agent definition so the agent will
use it. We will add another use clause that tells the agent to use it as an event module. Because
the agent will not receive any other events, the event module will be triggered only by an action
that the agent performs. We exploit this to count the number of times the print action has been
performed. Add a third use clause to the agent definition in the HelloWorld10x.mas2g file
and make sure it looks like:

% Simple Hello World agent that prints "Hello, world!" message 10 times.
define helloWorldAgent as agent {

use initCounter as init module.
use helloWorld10x as main module.
use updateCounter as event module.

}

launchpolicy{
launch helloWorldAgent.

}

We are now ready to run our agent again. Do so now to see what happens.

Some basic magic has happened. You should have seen that the agent prints “Hello, world!”
exactly ten times and then terminates. Inspect the agent’s goal base this time (you should use De-
bug Mode to be able to do this). You should see that the initial goal of the agent has disappeared!
The reason is that the agent now believes it has achieved the goal (check this by inspecting the
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beliefs). As soon as an agent starts believing that one of its goals has been completely achieved
that goal is removed from the agent’s goal base. There is no point in keeping a goal that has been
achieved. In our “Hello World” agent example this means that the agent repeatedly will apply
the rule for printing text until it comes to believe it printed 10 lines of text. Because having the
goal is a condition for applying the rule, the agent stops printing text when the goal has been
completed and is removed.

Exercise 2.5.1
What happens if we change the number of lines that the agent wants to print in
the initCounter module? For example, replace nrOfPrintedLines(10) with
nrOfPrintedLines(5) and run the MAS again. You should see now that the agent
does not print anything. The reason is that the rule in the helloWorld10x module is not
applicable any more. Fix this by using a variable in the condition of the rule instead of the
hardcoded number 10. Run the MAS again to verify that the problem has been fixed.

2.6 Adding an Environment
So far we have been using the built-in print action to output text to the console. We will now
replace this action and use an environment called HelloWorldEnvironment instead that opens
a window and offers a service called printText to print text in this window. Our “Hello World”
agent can make use of this service by connecting the agent to the environment. Goal supports
loading environments automatically if they implement a well-defined environment interface called
EIS [3, 4]. As an agent developer, it is sufficient to know that an environment implements this
interface but we do not need to know more about it. A diverse set of environments that implement
this interface can be found on eishub on github.

An environment can be added to a multi-agent system by adding a use clause for that
environment at the start of a MAS file. All we need to do is to indicate where the environment
can be found. In our case, we want to add the HelloWorldEnvironment environment, which
you can find here. Download and copy this jar file to the HelloWorld project folder. Copying
the jar file to the same folder as the MAS file that you created will make sure that the environment
file can be found. Before we proceed, let’s copy the HelloWorld10x.mas2g and give this file
the name ScriptAgent.mas2g. Add the following use clause at the start of this new MAS file:

use "HelloWorldEnvironment-1.2.0.jar" as environment.

The next step is to make sure that our “Hello World” agent is connected to this environment.
An environment makes available one or more controllable entities and agents can be connected
to these entities. Once connected to an entity the agent controls the actions that the entity will
perform. When the HelloWorldEnvironment is launched it makes available one entity. When
this happens the agent platform is informed that an entity has been created. An agent then can
be connected to that entity using a launch rule in the launch policy section. To connect our
agent to the entity made available by the HelloWorldEnvironment we only need to make a
slight change to our earlier launch policy. Replace the launch instruction in the launch policy with
the following launch rule:

launchpolicy{
when * launch helloWorldAgent.

}

The launch rule above adds a condition in front of the launch instruction. The rule is triggered
whenever an entity becomes available, as * matches with any entity. When triggered, the agent
helloWorldAgent is created using the agent definition, and connected to the entity.

The next thing we need to do is tell the agent which services the environment offers. The
HelloWorldEnvironment offers one service, or action, called printText. This action has

https://github.com/eishub
https://github.com/eishub/HelloWorldEnvironment/releases
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one argument that can be filled with a string. For example, our agent can print “Hello, world!”
by performing the action printText("Hello, world!"). We can let the agent know it can
perform this action by specifying it in an action specification file. Create an action specification
file printText.act2g and add the action specification below:

use dummy as knowledge.

% The action printText expects a string of the form "..." as argument. It can
% always be performed and has no other effect than printing Text to a window.
define printText(Text) with

pre{ true }
post{ true }

An action specification consists of a declaration of the action, e.g., printText with its argu-
ment Text, a precondition (pre) and a postcondition (post). A precondition is a condition that
can be evaluated to true or false. Here we used true as precondition which always evaluates to
true, meaning that the action can always be performed. A postcondition also evaluates to true
or false but more importantly it can be used to let the agent know what the effect of performing
the action is. For our “Hello World” agent we did not specify any effect and also used true as
postcondition. (We could have left the postcondition empty but by not doing so we indicate that
we at least gave it some thought.)

The only thing that remains is to start using the new service. To do so, do the following:

• copy and rename the helloWorld10x module to printScript,

• replace the reference to helloWorld10x in the ScriptAgent MAS file with printScript,

• replace helloWorld with printScript in the printScript module file,

• replace the print action in the module’s rule with printText, and

• add a use clause for the action specification file we just created (see below).

The use clause is needed to declare the action printText used in the rule. The module
printScript should look like:2

use counter as knowledge.
use printText as actionspec.
exit = nogoals.

module printScript {
if goal( nrOfPrintedLines(10) ) then printText("Hello, world!").

}

Launch the MAS again (in debug mode) and run it. Adding the environment and connecting
the agent to the entity did not only make the agent print something to a window. The agent also
received percepts from the environment. Inspect the Introspector of the “Hello World” agent
and select the Percept tab. You should see the following:

lastPrintedText(’Hello, world!’)
printedText(9)

As you can see, the environment keeps track itself of how many times something has been
printed, i.e., the printText action was performed, and informs the agent of this by means of the
second percept printedText above.

If the environment’s counting is correct (you may assume it is), then something is going wrong,
however. Instead of printing “Hello, world!” 10 times the environment informed the agent it

2If you completed Exercise 2.5 instead of 10 your rule may have a variable.
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printed it only 9 times... What happened? Recall that the event module is triggered by events
and therefore also by percepts the agent receives. Because the agent received percepts before the
agent performed an action, the updateCounter module used for event processing incorrectly
inserted nrOfPrintedLines(1) into the agent’s belief base!

We can learn an important lesson from this: whenever possible use percept information from
the environment to update an agent’s beliefs. To follow up on this insight we will use percepts
to update the agent’s beliefs instead of the rule in the updateCounter module we used before.
The basic idea is to add a rule to the agent program that tells us that if a percept is received
that informs us we printed NewCount lines and we believe that we printed Count lines, then we
should remove the old belief and add the new information to the belief base of the agent.

In order to create this rule for processing the percept, we need to find out how to inspect the
percepts that an agent receives. This can be done by the percept operator which like the bel
operator inspects the agent’s state but inspects the agent’s percept base instead of its belief base.
Replace the old rule and add the following rule to the updateCounter module (or use a renamed
copy of the module and rename references where needed):

if percept( printedText(NewCount) ), bel( nrOfPrintedLines(Count) )
then delete( nrOfPrintedLines(Count) ) + insert( nrOfPrintedLines(NewCount) ).

Run the MAS and check the belief and percept base of the agent to verify that the agent
printed “Hello, world!” 10 times.

Exercise 2.6.1
The HelloWorldEnvironment provides an initial percept printedText(0). In this
exercise we will use this percept instead of providing the agent with an initial belief
nrOfPrintedLines(0) in the initCounter module used to initialize the agent be-
fore. To this end do the following:

• Remove the rule that inserts the beliefs from the initCounter module.

• Add a rule for processing the initial percept. Copy the rule from the updateCounter
module and modify it as needed. (As there is no initial belief yet, remove the bel
condition from the rule and also remove the delete action.)

2.7 A Simple Script Printing Agent
Using the language elements that we have seen in the previous sections, we will now extend the
simple “Hello World” agent and turn it into an agent that prints a script that consists of a sequence
of sentences. We want different script sentences to be printed on different lines so the only thing
we need to do is make sure that the printText action each time prints the next sentence in our
script. We also want the agent to store the script in one of its databases.

We introduce a new predicate script(LineNr, Text) to store the different sentences of
our script. Introducing new predicates is up to us and we can freely choose predicate names with
the exception that we should not use built-in predicates of the SWI Prolog language. The idea is
that the first argument LineNr of the script predicate is used to specify the order and position
of the sentence in the script. We will use the second argument Text to specify the string that
needs to be printed in that position. We choose to use the belief base to store our script. Create
a new Prolog file script.pl and add the following script facts to the file:

script(1, "Hello World").
script(2, "I am a rule-based, cognitive agent.").
script(3, "I have a simple purpose in life:").
script(4, "Print text that is part of my script.").
script(5, "For each sentence that is part of my script").
script(6, "I print text using a ’printText’ action.").
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script(7, "I keep track of the number of lines").
script(8, "that I have printed so far by means of").
script(9, "a percept that is provided by the printing").
script(10, "environment that I am using.").
script(11, "Bye now, see you next time!").

We will use these facts as beliefs in the printScript module. Because facts implicitly declare
a predicate we do not need to add an explicit declaration for the script/2 predicate. Now add
the following use clause to the printScript module:

use script as beliefs.

We need one more modification before we can use the script stored in the belief base. We need
to change the following rule for printing text in the module as well.

if goal( nrOfPrintedLines(10) ) then printText("Hello World") .

This rule does not use the script text in the Prolog program script. In order to figure out
which line in the script we need to print, the agent should inspect its belief base. The idea is
that the agent should retrieve the number of the last line printed, add 1 to that number to obtain
the next line number, and retrieve the corresponding text from the belief base using the script
predicate. Of course, we also need to make sure that the text we retrieved from the script is printed
by the printText action. As before, we use the , operator to combine these different queries
and use the bel operator to inspect the belief base. But this time we also use the , operator
to combine the goal condition that is already present with the bel condition for inspecting the
belief base. A variable Text is used to retrieve the correct script line from the belief base and for
instantiating the printText action with the corresponding text for this line. Now modify the
rule in the printScript module’s program section as follows.

if goal( nrOfPrintedLines(10) ),
bel( nrOfPrintedLines(LineNr), NextLine is LineNr + 1, script(NextLine, Text) )
then printText(Text).

Run the script agent to verify that the script is printed. The script has been printed except
for the last line. This is because the agent has a goal to only print 10 lines but the script consists
of 11 lines! Fix this issue by changing the 10 into 11. You need to change this only in the
initCounter module if you completed the first exercise in Section 2.5; otherwise you will also
need to modify the 10 that occurs in the rule in the printScript module. The next exercise
asks you to resolve the issue in a more principled manner.
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Exercise 2.7.1
The goal in our script agent explicitly mentions the number of lines the agent wants to print.
This is a form of hard-coding that we would like to avoid. We will do so by changing the
initCounter module that our script agent uses in this exercise and provide it with an
alternative method to set the goal to print the entire script.

• First, remove the rule that sets the goal in the initCounter module. The idea is to
compute a goal instead to print the entire script and to adopt that goal.

• Move the use clause for the script from the printScript to the initCounter
module. Add a declaration for the script/2 predicate to the Prolog file counter.pl
(and rename the file and references if you like).

• Add the rule template if bel(...)then adopt(nrOfPrintedLines(Max)).
to the program section of the initCounter module. (Don’t forget the trailing ‘.’!)

• The idea now is to compute the Max number of lines that need to be printed in the
condition of the rule to fill in the .... We assume you are familiar with Prolog
here. Use the built-in Prolog predicates findall/3 and max_list/2 to compute
the number of lines that need to be printed and make sure the result is returned in
the variable Max. (See, e.g., the SWI Prolog manual [44] for additional explanation.)

You can check whether your agent has been modified correctly by comparing your agent
with the script agent that is distributed with Goal.



Chapter 3

Inspecting Cognitive States

As we saw in Chapter 1, three of the five components of a cognitive state consists of the agent’s
knowledge, beliefs, and goals. An agent has a cognitive state to reason about and keep track
of the current state of the environment it interacts with and the state it wants the environment
to be in. In order to do so, an agent needs to use a knowledge representation (KR) language.
Goal supports multiple knowledge representations.1 An agent can use at most one at the same
time, however, and we need to make a choice. In this chapter we will look at how we can use
Prolog for representing an agent’s knowledge, beliefs, and goals. We will also introduce the state
operators bel and goal for inspecting or querying the cognitive state of an agent and explain
how to use these for writing cognitive state queries.

3.1 Representing Knowledge, Beliefs and Goals
One of the first steps in developing and writing a Goal agent is to design and write the knowledge,
beliefs and goals that an agent needs. An important task is to select suitable predicates or concepts
for representing the agent’s environment. As we will see in Chapter 6, the percepts that are received
from an environment can provide a useful starting point. It is important to get the representation
of the agent’s knowledge, beliefs and goals right, as the rules introduced in Chapter 5 that an
agent uses for decision-making depend on it. Moreover, as we will see, the action specifications
introduced in Chapter 4 also depend on it. Although Goal is not married to any particular
knowledge representation language, here we will use SWI Prolog [43].

3.1.1 Example Environment: The Blocks World
As a running example in this chapter, we will use one of the most famous environments in artificial
intelligence known as the Blocks World [37, 41, 46]. Admittedly, this is a toy domain, but even
Blocks World problems are surprisingly hard to solve efficiently. In its most simple (and most
common) form, in the Blocks World an agent can move and stack cube-shaped blocks on a table
by controlling a robot gripper. One important fact is that the robot gripper is limited to holding
one block at a time and cannot hold a stack of blocks. This is important information that we
will need when we specify the gripper action in the Chapter 4. For now, we will focus on how to
specify the configuration of blocks on the table using Prolog. A block can be directly on top of at
most one other block. That is, a block is part of a stack and either located on top of a single other
block, or it is sitting directly on top of the table. These are some of the basic “laws” of the Blocks
World. We add one assumption about the table in the Blocks World: we will assume throughout
that the table is large enough to be able to place all blocks directly on the table. This is another

1See https://github.com/goalhub/krTools for KR languages that are supported.
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Figure 3.1: Initial Blocks World State Figure 3.2: Goal State

basic “law” of the version of the Blocks World that we will use.2 Figures 3.1 and 3.2 illustrate
an example Blocks World problem. Such a problem consists of an initial state or configuration of
blocks and a goal state. It is up to the agent to achieve the goal state by moving blocks in the
initial state and successor states.

A cognitive agent with the task to solve a Blocks World problem, i.e., to achieve the goal
state in the Blocks World, needs to be able to represent and reason about the configuration of
blocks. We need to introduce Prolog predicates for specifying a configuration of blocks. As a rule
of thumb, it is a good idea to introduce predicates that correspond with the most basic concepts
in a domain. More complicated concepts then may be defined in terms of the more basic concepts.
We will use this strategy here as well.3 One of the most basic concepts in the Blocks World is
that a block is on top of another block or is on the table. To represent this concept, we introduce
the binary predicate on/2:

on(X, Y)

We use the predicate on(X, Y) to express that block X is (directly) on top of Y. This is our
informal definition of the predicate on(X, Y). For example, on(b1,b2) is used to represent the
fact that block 1 is on block 2 and on(b2,table) is used to represent that block 2 is on the
table. In Figure 3.1, on(b1,b2) is the case and on(b2,table) and on(b1,b3) do not hold.
on(b1,b3) does not hold because on(X, Y) only holds if a block X is directly on top of Y and
there is no other block in between block X and Y. It is important that only blocks can be on top
of something else in the Blocks World. This implies that whenever on(X, Y) holds X must be
a block. Y however does not need to be a block but may also be the table. Finally, there can be
at most one block on top of another block. These rules are specific to our version of the Blocks
World. They cannot be enforced automatically. It is therefore important to realize that it is up
to the agent programmer to stick to these rules and to use the predicate on in “the right way”.

So far we have been using names for blocks. We have said that on(b2,table) means that
block 2 is on the table. Implicitly, we have made a unique names assumption here: We have

2See [16]. For other, somewhat more realistic presentations of this domain that consider, e.g., limited table size,
and varying sizes of blocks, see [20].

3It can be shown that the basic concept above is sufficient in a precise sense to completely describe arbitrary,
possibly infinite configurations of the Blocks World; that is not to say that everything there is to say about a Blocks
World configuration can be expressed using only the above predicate [16]. Here we follow tradition and introduce
the predicates on and clear to represent Blocks World configurations.
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assumed that all blocks have unique names that we can use to refer to each block. This is very
useful because it allows us to distinguish one block from another just by their names, which
simplifies our task of programming an agent for the Blocks World. This is much simpler than
having to identify a block, for example, by means of its position with respect to other blocks.
We will also make the domain closure assumption: There are names for all objects in the Blocks
World. That means that all blocks have a name; we use table to refer to the table in the Blocks
World. Together, the unique name and domain closure assumption imply that all objects have a
unique name.

Blocks World Problem A Blocks World state is a configuration of blocks and can be identified
with a set of facts F of the form on(X,Y). A state F must be consistent with the “laws” of the
Blocks World, i.e., at most one block is directly on top of another, etc. If B is the set of blocks, we
can differentiate incomplete or partial states from complete states. A state F that contains a fact
on(X,Y) for each block X ∈ B is called complete, otherwise it is a partial state. Using this notion
of Blocks World state, we can now also formally define a Blocks World problem. A Blocks World
problem is a pair ⟨I, G⟩ where I is a (complete) initial state and G is a (possibly partial) goal state.

Domain Knowledge To make explicit which blocks are present in the Blocks World we intro-
duce the unary predicate block/1. Recall that a block must be on something and if we have
on(X,Y) we must have that X is a block. We can use this domain knowledge to define the
block predicate by the following Prolog rule:

block(X) :- on(X, _).

In order for this definition to work we must assume that all facts about which block sits on
top of another (or the table) are known to the agent.

The block predicate can be used to define another useful predicate clear/1. We will use
clear(X) to mean that a block can be moved on top of X. This informal reading allows us to
apply the predicate to blocks as well as the table. A block can be moved on top of another block
X only if there is no other block sitting on top of X. That is, a block without any block on top of
it is clear. The table is always clear in our sense, as in our version of the Blocks World the table
always has room to place a block. We can capture this domain knowledge by the following Prolog
clauses:

clear(table).
clear(X) :- block(X), not( on(_, X) ).

In order to deal with the limitations of the gripper it is important to be able to conclude that
a block is clear. A block can only be moved if it is clear, i.e., there is no other block sitting on top
of it. The clear(X) predicate can also be used to check that a block can be moved on top of X.

Floundering The definition of the clear predicate can be used to illustrate various important
things that you need to consider when writing Prolog definitions. One issue is that variables in a
negated fact need to be sufficiently instantiated. Reversing the conjuncts in the definition of the
clear predicate, for example, would cause a problem. If the definition

clear(X) :- not( on(_, X) ), block(X).

would be used, the query clear(X) without X being instantiated would always fail! In a Blocks
World with a finite number N > 0 of blocks, however, there must at least be one block that is clear.
What goes wrong is that the negation operator is applied to the non-ground literal on(_, X).
As the example illustrates this is not safe as the negation operator does not bind any variables.
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A Prolog program that applies negation to a non-ground literal is said to flounder. As a rule of
thumb, to avoid the floundering problem, make sure that each variable in the body of a rule first
appears in a positive literal. In our definition of the clear predicate, we have made sure that
the variable X is bound first by the positive literal block(X) before the variable is used in the
second, negative literal not(on(_, X)). Moreover, in our definition we have used a don’t care
variable _ instead of the variable Y above. This not only indicates that we do not care about how
this variable is instantiated, but also makes sure that no bindings for this variable are passed on.

Closed World Assumption Another important thing to realize is that we can only be sure
that the definition of clear(X) correctly infers that a block is clear if the Blocks World state is
completely represented. Note that the body block(X), not(on(_, X)) of the rule defining
the predicate clear succeeds for every block X for which it cannot be shown that on(_, X)
holds. This is because the negation in Prolog is negation by (finite) failure. Only in case a search
for a proof of on(_, X) fails Prolog’s negation succeeds. Absence of information thus allows us
to conclude that a block is clear. But this is only correct if that information is not simply missing,
i.e., if all facts about a Blocks World configuration are known.

Another way to make this point is saying that Prolog supports the Closed World Assumption.
Informally, making the Closed World Assumption means that anything not known to be true is
assumed to be false. In our example, this means that if there is no information that there is a
block on top of another, it is assumed that there is no such block. This assumption, of course,
is only valid if all information about blocks that are on top of other blocks is available. In other
words, the state represented must be complete.

A related issue is that an agent can only keep track of the complete state of its environment
if that state is fully observable. The lesson here is that domain knowledge needs to be carefully
designed and basic assumptions about, e.g., the observability of an environment need to be taken
into account when representing domain knowledge. In our running example, if an agent would
not be able to keep track of the complete configuration of blocks in the Blocks World, the rule for
clear(X) would need to be modified.

Conceptual Knowledge It will be useful to be able to identify the position of a block in a
stack of blocks. This allows us, for example, to check which blocks are sitting below another block
and whether this is what we want (or, need to solve a Blocks World problem). To this end, we
introduce and define the concept of a tower for the Blocks World as follows:

tower([X]) :- on(X, table).
tower([X,Y|T]) :- on(X, Y), tower([Y| T]).

The rules for the tower/1 predicate recursively define when a list [X|T] of blocks is a tower.
The first rule says that [X] is a tower if it is on the table, i.e., on(X,table) holds. It requires
that the basis of any tower is grounded on the table. The second rule says that whenever [Y|T]
is a tower, [X,Y|T] that extends this tower with a block X sitting on top of Y also is a tower.

Note that if [X|T] according to this definition is a tower, this does not mean that block X is
clear. As a consequence, any stack of blocks that is part of a larger stack is a tower. We can, for
example, derive tower([b2,b3]) from the facts that represent the initial state of Figure 3.1.
Perhaps this definition does not completely match our common sense notion of a tower, but for
our purposes the definition is sufficient.

Although there are other useful concepts that we could introduce (see for an example the defi-
nition of the predicate above/2 in the Exercise Section), the predicates that we have introduced
are sufficient for our purposes of programming a strategy for solving Blocks World problems.
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3.1.2 Creating a Cognitive State: Use Clauses
Three of the five components of a cognitive state of a Goal agent consists of the agent’s knowl-
edge, beliefs and goals (see also Figure 1.3). An agent inspects and modifies this state at runtime
similar to a Java method which operates on the state of an object. Agent programming therefore
can also be viewed as programming with cognitive states. The informational state of the agent
consists of the state components that concern the current state of the environment: the knowl-
edge base and belief base of an agent. Knowing and believing are also called informational
attitudes of an agent. Other informational attitudes are, for example, expecting and assuming.
The motivational state of the agent consists of the state components that concern the desired
state of the environment: the goal base of an agent. Wanting is a motivational attitude.
Other motivational attitudes are, for example, intending and hoping.

Initializing a Cognitive State The content of an initial cognitive state is specified in the
knowledge representation language that the agent uses. In our case, as we are using Prolog, the
content of a state is specified as a Prolog program. The initial knowledge, beliefs, and goals of
the agent’s state therefore are specified in Prolog files. These files can be imported in the agent’s
state by means of use clauses at the start of a module file that is part of the agent program. A
use clause has the form

use id as usecase.

Here, id is the name of a KR file (without extension), i.e. the name of a Prolog file in our case,
and usecase either is knowledge, beliefs, or goals. We have seen already some examples in
Chapter 1 where counter.pl was imported as knowledge and script.pl was imported as
beliefs. Note that the file’s extension should not be included in a use clause. We simply write,
e.g.,

use counter as knowledge.

Also note that a use clause must be followed by a dot. Use clauses are not the only way that an
agent can be initialized. In Chapter 1 we saw that rules in a module can also be used (as init
module) for initializing the state of an agent. We used a module there to initialize the goal base
of the agent.

Knowledge and Beliefs The difference between knowledge and beliefs in Goal is that knowl-
edge is static and cannot change at runtime and belief is dynamic and changes at runtime. As a
result, the knowledge base of an agent cannot be used to keep track of the part of the state of
the environment that changes over time. Instead the belief base of the agent needs to be used for
keeping track of the current state of the environment and should contain facts that may change
over time. If we want to specify the initial components of these bases, we need to use different
files and a separate use clause for importing knowledge and for beliefs. A file that specifies the
knowledge or the initial beliefs of an agent must be a Prolog program and respect the usual syntax
of Prolog. It is possible to use most of the built-in operators of the Prolog system that is used (in
our case, SWI Prolog [43]).

The difference between knowledge and beliefs explained above provides a basic guideline for
deciding what to include in which file. Because rules are used for specifying domain knowledge and
for defining conceptual knowledge, and rules cannot be changed at runtime as will be discussed
in more detail in Chapter 4, rules are best included in a Prolog file imported as knowledge. This
means that these rules will be included in the agent’s knowledge base. As facts such as on(b1,b2)
can be modified at runtime, these typically are included in a file that specifies an initial belief
state for the agent and are best included in a Prolog file imported as beliefs. The exception here
are facts that do not change and represent domain knowledge. A fact in the Blocks World, for
example, that is best included in the agent’s knowledge base is clear(table) because it is
always true.

It is important that all predicates in a Prolog file are declared so that the agent knows which
predicates it can use in its knowledge, beliefs, goals, decision rules, and action specifications.
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In (SWI) Prolog, a predicate can be declared either by defining it by means of a Prolog rule
or by explicitly declaring it by means of the :- dynamic directive. For example, the state-
ment :- dynamic on/2. (dynamically) declares the predicate on/2 so that it can be used in
the rules that we defined above. Multiple predicates can be declared at once, for example, :-
dynamic on/2, timer/1. declares the two predicates on/2 and timer/1. Note that facts
like on(b1,b2) in a Prolog program also (implicitly) declare the predicate on/2. As a rule, any
predicate in a Prolog program that is used in the body of a Prolog rule but not defined, i.e., does
not occur in the head of a Prolog rule or as a fact, needs to be explicitly declared using the :-
dynamic directive.

Based on this discussion, we include the domain and conceptual knowledge introduced above
as well as the fact clear(table) in a single Prolog file that we will import later as knowledge:

% Declaration of the on/2 predicate.
:- dynamic on/2.

% only blocks can be on top of another object.
block(X) :- on(X, _).

% the table is always clear.
clear(table).
% a block is clear if nothing is on top of it.
clear(X) :- block(X), not( on(_, X) ).

% the tower predicate holds for any stack of blocks that sits on the table.
tower([X]) :- on(X, table).
tower([X, Y| T]) :- on(X, Y), tower([Y| T]).

Because we will use this Prolog program later, create a new file and name it bwknowledge.pl.
We can import this file by including the use clause use bwknowledge as knowledge in a
module file. Note that the extension is not specified; it is retrieved by the system and used to infer
the knowledge representation language that is used automatically (for KR known to the platform;
see also footnote 1).

As the initial Blocks World state consists of facts that may change we include these in a
separate file that we will import as beliefs. The initial state of Figure 3.1 is represented by the
following facts:

on(b1,b2). on(b2,b3). on(b3,table). on(b4,b5). on(b5,table). on(b6,b7). on(b7,table).

Note that the on-facts implicitly declare the on/2 predicate and we do not need to add an
explicit declaration. Create this file and name it bwbeliefs.pl. We can import this file then
later by including the use clause use bwbeliefs as beliefs in a module file. The use case
keyword beliefs here indicates that the file should be used for initializing the agent’s belief
base. Also note that because we are using a Prolog database we cannot include negative literals
(see the discussion above about the Closed World Assumption).

Perception Although it is possible to introduce initial facts into the belief base of an agent by
means of a use clause that imports a Prolog file as beliefs, it is not very common to initialize
the beliefs of an agent in this way. There are two reasons for this. First, it is a rather inflexible
method for initializing an agent’s beliefs. If we want to initialize an agent with a different set of
facts, we would need a different file for each set. Second, and more importantly, if the agent is
connected to an environment, there is an alternative for initializing that agent’s beliefs. Usually
the initial state of the environment is not known in advance and the initial beliefs need to be
obtained by perceiving the initial state of the environment. Initial facts about the current state
of the environment thus typically are collected through the sensors available to the agent. To
this end, a module used as event module can be used; we saw an example of that in Chapter 1
already. For that reason, there may not be a need for a use clause for beliefs in an agent program.



CHAPTER 3. INSPECTING COGNITIVE STATES 28

Goals In our running example, the Blocks World, we saw that the on/2 predicate can be used
to specify an initial state. It can also be used to specify the goal state of the agent. For our
specific example domain, illustrated in Figure 3.2, we can create a Prolog file that represents the
goal state by listing the facts that hold in that state as follows:

on(b1,b5), on(b2,table), on(b3,table), on(b4,b3), on(b5,b2), on(b6,b4), on(b7,table).

Create this file and name it bwgoals.pl. We can imported this file later by including the use
clause use bwgoals as goals in a module file. The use case keyword goals here indicates
that the file should be used for initializing the agent’s goal base. Intuitively, what is wanted should
not be the case yet. The main reason is that a rational agent should not spent its resources on
trying to realize something that is already true. It is easy to verify that the clause above represents
the goal state depicted in Figure 3.2 and is different from the initial state.

There is one very important difference between the specification of an initial goal and of an
initial belief state. We have used Prolog’s conjunction operator , in the specification of a goal
above instead of the dot . used after each fact in the specification of the initial beliefs. A goal
thus is explicitly represented as a conjunction of facts whereas beliefs are not. Strictly speaking
this means that the file with the goal above is not a Prolog file. Importing it directly in Prolog
will produce an error:

ERROR: .../bwgoals.pl:1:
Full stop in clause-body? Cannot redefine ,/2

There is a good reason, however, why we use the conjunction operator for specifying a goal.
The reason is that each of the facts that together represent the goal state need to be achieved
simultaneously. If these facts would have been included as clauses separated by a dot we would
get something different. The specification of the goals of an agent below thus is not the same as
the specification of the goal state above:

on(b1,b5). on(b2,table). on(b3,table). on(b4,b3). on(b5,b2). on(b6,b4). on(b7,table).

The main difference concerns the number of goals. The conjunctive goal counts as a single
goal, whereas the 7 atoms separated by a dot would count as 7 distinct, independent goals. It
is, for example, very different to have two separate goals on(b1,b2) and on(b2,b3) instead
of a single conjunctive goal on(b1,b2), on(b2,b3). The two separate goals do not pose any
restrictions on the order of achieving them. But combining these goals into a single conjunctive
goal requires an agent to achieve both (sub)goals simultaneously. This restricts the actions that
the agent can perform to achieve the goal. In the first case, where we have two separate goals,
the agent may, for example, put b1 on top of b2, remove b1 again from b2, and put b2 on top
of b3. Obviously, that would not achieve a state where b1 is on top of b2 which is on top of b3
at the same time.4 As separate goals may be achieved at different times it also makes sense that
multiple individual goals are not consistent when combined. This is not the case for beliefs (think
about it, inconsistent beliefs cause problems). For example, an agent might have the two goals
on(b1,b2) and on(b2,b1). Obviously these cannot be achieved simultaneously, but they can
be achieved one after the other. A goal such as on(b1,b2) should be read as at some time in
the future on(b1,b2) is true. The temporal operator is left implicit in what we actually write in
a program. The informal reading explains the difference between beliefs and goals.

Summarizing, it is very important to realize that there is a difference between using the dot
or the comma when specifying one or more goals. The dot operator separates goals where the

4These observations are related to the famous Sussman anomaly. Early planners were not able to solve simple
Blocks World problems because they constructed plans for subgoals (parts of the larger goal) that could not be
combined into a plan to achieve the main goal. The Sussman anomaly provides an example of a Blocks World
problem that such planners could not solve, see e.g. [19].
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comma indicates a conjunction of sub-goals of a single goal. The sub-goals of a larger goal need
to be achieved simultaneously. As a result, the content of a file specifying an agent’s initial goals
is not a Prolog program because the comma separator , is used to construct conjunctive goals.

Goals Must Be Ground We briefly discuss some technical aspects of specifying a goal. The
most important one is that a goal must be ground. That is, it should not contain any free
variables. The reason for this is that it is not clear what the meaning of a goal with a free
variable is. For example, what would a goal on(X,table) mean? In Prolog, the reading would
depend on whether on(X,table) is a clause (or rule with empty body) or a query. In the former
case, a goal on(X,table) would be implicitly universally quantified and the meaning would be
that everything should be on the table. This poses a problem as it is not clear how an agent
can compute everything. Taking on(X,table) as a query would require an existential reading.
The goal would mean that something should be on the table. Perhaps we can make sense of the
latter reading but we cannot choose, however, since we want to be able to store on(X,table)
in a Prolog database and we want to use on(X,table) as a Prolog query to verify whether it
is believed by the agent (to check whether the goal has been achieved). Storing the fact in a
Prolog database means it is implicitly universally quantified whereas the use of the fact as a query
assumes existential quantification. As we cannot have it both ways, we require goals to be ground.
Finally, also note that, just as is the case for beliefs, we cannot use negative literals for specifying
a goal because Prolog does not support storing negative literals in a database (see the discussion
on the Closed World Assumption). We thus cannot specify explicitly that something should not
hold as part of a goal in Prolog. Another knowledge representation language than Prolog would
be needed to do so.

Types of Goals Goals that need to be realized at some moment in the future are also called
achievement goals. In order to realize such goals, an agent needs to perform actions to change
the current state of its environment to ensure the desired state. A goal of realizing a particular
configuration of blocks different from the current configuration is a typical example of an achieve-
ment goal. Achievement goals, however, are just one type of goal among a number of different
types of goals. At the opposite of the goal spectrum are so-called maintenance goals. In order
to realize a maintenance goal, an agent needs to perform actions, or, possibly, refrain from per-
forming actions, to maintain a specific condition in its environment to ensure that this condition
does not change. A typical example in the literature is a robot that needs to maintain a minimum
level of battery power (which may require the robot to return to a charging station). In between
are goals that require an agent to maintain a particular condition until some other condition is
achieved. An agent, for example, may want to keep unstacking blocks until a particular block
needed to achieve a goal configuration is clear (and can be moved to its goal position).

knowledge:
:- dynamic on/2.
block(X) :- on(X, _).
clear(table).
clear(X) :- block(X), not( on(_, X) ).
tower([X]) :- on(X,table).
tower([X,Y|T]) :- on(X,Y), tower([Y|T]).

beliefs:
on(b1,b2). on(b2,b3). on(b3,table). on(b4,b5). on(b5,table). on(b6,b7). on(b7,table).

goals:
on(b1,b5), on(b2,table), on(b3,table), on(b4,b3), on(b5,b2), on(b6,b4), on(b7,table).

Figure 3.3: The Initial Cognitive State of an Agent That Represents Figures 3.1 and 3.2
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Example Cognitive State By putting everything together, we can construct the initial cogni-
tive state of our Blocks World agent. In Figure 3.3, we have indicated the various bases by means
of their corresponding use case keywords.

3.2 Inspecting an Agent’s Cognitive State
Agents that derive their choice of action from their beliefs and goals need the ability to inspect
their cognitive state. In Goal, state queries provide the means to do so. These queries are
conditions used in rules to determine which actions the agent will perform (see Chapter 5).

3.2.1 Basic State Queries
Basic state queries are used to inspect either the belief or goal base. The operator bel is used to
inspect the belief base. The goal operator is used to inspect the goal base. We will add other
operators later in Chapter 6 and 8 for inspecting an agent’s percept and message base. Note that
there is no operator for inspecting the knowledge base. This is because the knowledge of an agent
is queried in combination with the agent’s beliefs or with the agent’s goals. We will explain how
this works below. A basic belief query is of the form bel(qry). A basic goal query is of the
form goal(qry). In both types of queries, qry must be a query in the knowledge representation
language that is used. As we are using Prolog in this chapter, qry thus needs to be a Prolog
query.5

Belief Queries Informally, bel(qry) means that the the agent believes qry. An agent believes
that qry holds if it follows from both its knowledge and its beliefs. In order to evaluate if this is
the case, the knowledge and current beliefs of the agent are treated as a single database and qry is
evaluated on this database. In other words, a query bel(qry) holds whenever qry can be derived
from the content of the agent’s belief base in combination with the content of the knowledge base.
For example, the query bel(clear(a)) succeeds in the initial state that represents the Blocks
World of Figure 3.1. To see this, note that there is no fact of the form on(X,b1) and apply
the definitions of the clear/1 and block/1 predicates. In this state, the agent thus believes
that block a is clear. Try to find out yourself whether bel(tower([b1,b2,b3])) holds in the
initial cognitive state of Figure 3.3.

Goal Queries Informally, goal(qry) means that the agent has a goal qry. An agent has a
goal qry if it follows from one of the goals in its goal base in combination with its knowledge. As
with beliefs, knowledge and goals are combined in order to evaluate a goal query. There is a subtle
difference, however: Only one of the agent’s goals is combined with (all of) the agent’s knowledge.
In other words, a query goal(qry) holds whenever qry can be derived from a single goal of the
agent that is combined with the contents of the agent’s knowledge base.6 For example, the query
goal(tower([b5,b2])) succeeds in the cognitive state represented in Figure 3.3. To see this,
note that the the agent can derive the (sub)goals on(b2,table) and on(b5,b2) from its single
goal and apply the definition of the tower/2 predicate in the knowledge base.

The fact that an agent can reason about current towers as well as desired towers illustrates the
benefits of a separate knowledge base that can be combined with both the agent’s beliefs as well
as it’s goals. This also motivates the rule of thumb discussed above that rules should be included
in a specification of the agent’s knowledge.

5Note that a Prolog query qry is not prefixed with ?- here. That is, we simply write e.g. bel(p(X,Y)) and
do not write bel(?-p(X,Y)).

6This reading differs from that provided in [9] where the goal operator is used to denote achievement goals. The
difference is that a goal is an achievement goal only if the agent does not believe that φ. The goal operator goal
introduced here is a more basic operator. As we will see, it can be used in combination with the belief operator
bel to define achievement goals.



CHAPTER 3. INSPECTING COGNITIVE STATES 31

3.2.2 Cognitive State Queries
Cognitive state queries are constructed from the basic state queries bel(qry) and goal(qry).
These basic queries can be negated. not(bel(qry)) and not(goal(qry)) are cognitive state
queries. Basic queries and their negations are also called state literals. Finally, state literals can
be combined in a conjunction to form a cognitive state query. For example,

goal(on(b,table)), not(bel(on(b,table))

is a cognitive state query. It says that the agent wants block b on the table, i.e., on(b,table)
is a goal, and does not believe that this is currently true.

Basic queries or literals cannot be combined by disjunction. It is not possible, for example,
to write goal(on(b,table)); not(bel(on(b,table)), where ; denotes disjunction in
Prolog. This does not pose a real limitation on what can be programmed, however. State queries
are used as conditions in the rules of an agent program. Intuitively, the use of disjunction would
allow to program a rule to select an action if either one state query or another holds. Such a
condition would provide two different reasons for selecting the action. Instead of one rule that
combines both queries you can write multiple rules that select the action in either of these cases.

Achievement Goals Combinations of belief and goal queries are useful for expressing several
other intuitive concepts. A goal query goal(qry) only says that qry follows from one of the
goals that the agent has. This does not mean, however, that the agent believes that nothing
yet has been achieved to realize qry. An agent, for example, may have a goal on(b4,b3),
on(b3,table), as in Figure 3.2, but may also believe that part of this goal, e.g., on(b3,table)
in our example, has already been achieved. The parts of a goal that still need to be achieved
are called achievement goals. As achievement goals are important reasons for choosing to
perform an action, it is useful to introduce a special operator a-goal(qry) to identify these
goals. This operator can be used instead and simply is an abbreviation for state queries of the
form goal(qry), not(bel(qry)).7

a-goal(qry)
df= goal(qry), not(bel(qry))

Achievement goal queries are useful because they provide good reasons for an agent to do
something. In the Blocks World, for example, an agent needs to do something if a block is
misplaced. That a block is misplaced means that its current position is different from the position
that the agent wants it to be in. As the position on the table is not important, only the position
in the stack of blocks that the agent wants the block to be in is relevant. To obtain this position
from the agent’s state, we can write a goal query that retrieves the desired stack or tower that the
block is in using the tower/2 predicate. We can use the following query: goal(tower([X|T]))
with X a block and T a (possibly empty) tower. In order to conclude that block X is misplaced
we additionally need to check that the desired tower has not already been realized. We can use
the following query for this: not(bel(tower([X|T]))).8 As the Prolog query in the goal and
belief literals are the same, we can use the a-goal operator to combine both in a single query
a-goal(tower([X|T])) to express that block X is misplaced. Being able to conclude that a
block is misplaced is important for defining a strategy to solve a Blocks World problem because
only misplaced blocks have to be moved.

The state query a-goal(tower([X,Y|T])), bel(tower([Y|T])) will also be useful for
programming an agent that solves Blocks World problems. Note that the first conjunct says that
block X is misplaced. It also says that the agent wants tower([Y|T]). The second part says that

7See [23] for a discussion of this definition.
8To be precise, here the common sense difference between knowledge and belief is important. Normally we

would say that something is misplaced only if we know that it is in a different position than we want it to be. It
is not good enough if we only believe it is not with a chance of being wrong. If, in fact, the block is in the desired
position, in ordinary language, we would say that the block is believed to be misplaced but that in fact it is not.
The difference is not important, of course, if we may assume that the agent’s beliefs are true.
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the agent believes that tower([Y|T]). It follows that if the state query succeeds, only block X
still needs to be put in place. In other words, if the agent can move X on top of Y, the agent
can make a constructive move and bring a solution one step closer. Making a constructive move,
moreover, implies that the block moved will never have to be moved again. Making such a move
thus always is a good idea. The only missing piece of information that we still need to be able to
decide whether such a move is possible is when the move action can be performed. For this we
need to evaluate the precondition of the move action. In Chapter 4 we will look at preconditions
in more detail which we then will combine with the state query we just discussed in Chapter 5 to
program a strategy that solves Blocks World problems.

Sub-Goals Achieved Part of deciding whether a constructive move can be made consists in
checking whether part of the tower that the agent wants is already in place. In other words, it
consists of verifying that the query goal(tower([Y|T])), bel(tower([Y|T])) succeeds. If
this query holds, it means that the sub-goal tower([Y|T]) has been realized. More generally,
we call qry in a state query goal(qry), bel(qry) a goal achieved. We introduce the operator
goal-a(qry) as an abbreviation for this query to denote such goals.

goal-a(qry)
df= goal(qry), bel(qry)

Checking Whether an Agent Has Any Goals The goal operator is special in the sense
that it evaluates a KR query qry on only one of the goals that the agent has. But what happens
if the agent has no goals? In that case goal(qry) fails for all queries qry. This can be exploited
to check whether the agent has any goals at all. Note that the query goal(true) would succeed
if the agent has a goal no matter what the goal is. By negating this query we obtain a method for
evaluating whether the agent has a goal or not. The query not(goal(true)) succeeds only if
the agent has no goals, i.e., if the goal base of the agent is empty.

3.3 Notes
The components of an agent’s cognitive state that we discussed in this chapter consist of the
knowledge, beliefs, and goals of an agent about the environment it interacts with. These states
enable the agent to represent its environment but does not provide support for representing the
beliefs or goals of other agents. In particular, there is no support for representing the cognitive
state of another agent. That would require the ability to model another agent’s state and the
ability to represent another agent’s beliefs and goals. Agents that can have models of other
agent’s cognitive states are second- or even higher-order intentional systems. In Chapter 8 we will
discuss models for representing the states of other agents.

In this Chapter we have assumed Prolog [42, 43] is used by the agent. Goal does not commit to
any particular knowledge representation technology, however. Instead of Prolog an agent might use
variants of logic programming such as Answer Set Programming (ASP; [1]), a database language
such as Datalog [13], the Planning Domain Definition Language (PDDL; [19]), or other, similar
such languages, or possibly even Bayesian Networks [34]. The only assumption that we will make
throughout is that an agent uses a single knowledge representation technology to represent its
knowledge, beliefs and goals. For some preliminary work on lifting this assumption, we refer the
reader to [18].
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3.4 Exercises

knowledge:
:- dynamic on/2.
block(b1). block(b2). block(b3). block(b4). block(b5).
clear(table).
clear(X) :- block(X), not( on(_, X) ).
tower([X]) :- on(X, table).
tower([X,Y|T]) :- on(X, Y), tower([Y|T]).
above(X,Y) :- on(X,Y).
above(X,Y) :- on(X,Z), above(Z,Y).

beliefs:
on(b1,b4). on(b2,table). on(b3,b5). on(b4,b2). on(b5,b1).

goals:
on(b1,b2), on(b2,b3), on(b4,b5), on(b5,table).

Figure 3.4: An Example Cognitive State

3.4.1
Consider the cognitive state of Figure 3.4. Which of the following cognitive state queries
succeed? Provide all possible instantiations of variables, or otherwise a conjunct that fails.

1. goal(above(X,b4), tower([b4,X|T]))

2. bel(above(b1,X)), goal(above(b1,X))

3. bel(clear(X), on(X,Y), not(Y=table)), goal(above(Z,X))

4. bel(above(X,Y), a-goal(tower([X,Y|T]))

3.4.2
The query a-goal(tower([X|T)) can be used to express that block X is misplaced. A
block, however, is only misplaced if it is part of the goal state. This is not the case for block
3 in Figure 3.4. Block 3 is, however, in the way. This means that the block prevents moving
another block that is misplaced, and therefore needs to be moved itself (in the example in
Figure 3.4, we have that on(b5,b1) where b1 is misplaced but cannot be moved without
first moving b5). Provide a cognitive state query that expresses that a block X is in the
way in the sense explained, and explain why it expresses that block X is in the way. Keep
in mind that the block below X may also not be part of the goal state! Only use predicates
available in Figure 3.4.



Chapter 4

Action Specifications

An agent performs actions to effect changes in its environment in order to achieve its goals. It
is important for the agent to know when an action can be performed. An agent should only
choose to perform an action if the conditions for successfully performing it hold. We introduce
action specifications in this chapter to specify when an action can be done and what its effects
are. We also introduce actions that are part of the programming language itself. These actions
are internal actions. Actions made available by an environment are called external actions.
Unlike external actions, internal actions are not send to an environment for execution. Action
specifications must be provided for all external actions and for newly defined internal actions that
are not provided by the language.

4.1 Action Specifications
Unlike other programming languages, but similar to planners, actions that are made available by
an environment to an agent need to be specified as part of the agent program. The Goal language
also provides actions that are part of the language itself. These do not need to be specified as
the conditions when these actions can be performed and their effects are fixed by the language.
Actions are defined by specifying the conditions when an action can be performed and the effects
of performing the action. The former are also called pre-conditions and the latter are also called
post-conditions.

Action Specification File Actions are specified in one or more action specification files.
These files must be imported in modules that use these actions. Action specifications in Goal
are similar to STRIPS-style action specifications [32] and are of the form:

define id(parameters) with
pre { qry }
post{ upd }

An action is specified or defined by its name id, its parameters parameters of the form
(t1, ..., tn), where each ti must be a variable, a pre-condition qry and a post-condition
upd. The parameters of an action are instantiated at runtime. An action does not need to have
parameters and in that case only a name (without brackets) needs to be provided. A pre-condition
can be any valid query in the KR language used. A post-condition must be a conjunction of literals,
i.e., facts or negations of facts. In Prolog this means that the difference is that a pre-condition
can also be a disjunction but a post-condition cannot. You can also not use built-in, pre-defined
predicates of the Prolog language in a post-condition. Built-in predicates define useful concepts
that should not be updated.

A very simple example of an action specification is the following:

34
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define skip as internal with
pre { true }
post{ true }

This action specification specifies the action skip without parameters that can always be
performed and has no effect. The use case as internal indicates that the system should not
sent the action skip to an environment but treat it as an action that is handled internally by
the agent (for updating its state or otherwise). The true precondition indicates that skip can
always be performed. The true postcondition indicates that the action has no effect. It would
also have been ok to write empty pre- and postconditions { } here, but by making these conditions
explicit you indicate that you have not just forgotten to specify them and paid attention to it.

An action specification file consists of use clauses and one or more action specifications. The
use clauses should reference KR files that define the predicates that are used in the pre- and
post-conditions of actions. At least one KR files should be specified to enable the system to infer
which KR language is used (cf. also the empty dummy.pl file used for this in Chapter 1). An
action specification defines the action’s name and parameters, whether it is an internal or external
action, and the action’s pre- and post-condition. Parameters, if any, must be variables.

specification := useclause+ actionspec+

useclause := use id [as knowledge] .
actionspec := define id[(parameters)] [asclause] with pre{ qry } post{ upd }
asclause := as (internal | external)
qry := a valid KR query | true
upd := a valid KR update | true
parameters := variable (, variable)∗

variable := a variable of the KR language

Table 4.1: Action Specification Grammar

A use case of an action definition specifies whether the action should be treated as an internal
action or not. If no use case is specified the default external use case is assumed. If an agent
is connected to an environment, external actions will be sent to the environment for execution.
In that case, it is important that the name of an action corresponds with the name the envi-
ronment expects to receive when it is requested to perform the action. Check the environment’s
documentation to obtain this information. If an agent tries to perform and send an action to an
environment that is not recognized by that environment, the agent program will generate an error
and will be terminated.

Continuing the Blocks World example introduced in Chapter 3, we will now describe the robot
gripper that enables the agent that controls this gripper to pick up and move blocks. The robot
gripper can pick up at most one block at a time. It thus is not able to pick up stacks of blocks. As
is common in the simplified version of the Blocks World, we abstract from all physical aspects of
robot grippers. In its most abstract form, the gripper in the Blocks World is modeled as a robot
arm that can perform the single action of picking up and moving one block to a new destination
in one go. That is, the picking up and moving are taken as a single action that can be performed
instantaneously. This action can be specified as follows:

use bwknowledge as knowledge.

define move(X,Y) with
pre{ clear(X), clear(Y), on(X,Z), not(on(X,Y)) }
post{ not(on(X,Z)), on(X,Y) }

Because we want to use this file later create it now and name it bwmove.act2g. We can then
later import it by including the use clause use bwmove as actionspec in a module. (Note
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that as before the extension of the action specification file does not need to be provided.) The
use case keyword actionspec here is optional if the file name itself is unique. Note also that we
need to declare the use case for the knowledge that is used in the pre-condition.

4.1.1 Pre-conditions
The keyword pre in an action specification indicates that what follows is a pre-condition of
the action specified. Pre-conditions are queries of the knowledge representation language that is
used (e.g., a Prolog query). Pre-conditions are used to verify whether it is possible to perform
an action. A pre-condition φ is evaluated by verifying whether φ can be derived from the belief
base (as always, in combination with knowledge in the knowledge base). Free variables in a pre-
condition may be instantiated during this process just like executing a Prolog program returns
instantiations of variables. An action is said to be enabled whenever the agent believes that the
action’s pre-condition holds.1

The precondition for the move action specifies that in order to be able to perform the action
move(X,Y) of moving X on top of Y, both X and Y must be clear. The condition not(on(X,Y))
expresses that it a move action cannot be done if block X is already sitting on top of Y.

The condition on(X,Z) in the precondition does not specify a condition that needs to be
true in order to be able to perform the move action in the environment. Instead, this condition
retrieves in the variable Z the thing, i.e. the block or table, that block X is currently on. The
reason for including this condition in the precondition is that it is needed to be able to specify
the effects of the move action. After moving block X, the block no longer is where it was before.
This fact about X thus must be removed after performing the action which explains why we need
to retrieve this information first from the agent’s belief base in the pre-condition of the action.

It is best practice to include in the pre-condition of an action specification only those conditions
that are required for the successful execution of an action. These conditions include conditions
that are needed to specify the effects of an action as the on(X,Z) atom in the specification of
the move action. In other words, a pre-condition should only include conditions that need to
hold in order to be able to successfully perform the action. Conditions that, for example, specify
when it is a good idea to choose to perform the action should be specified in the the cognitive
state queries of one or more rules that provide the reason(s) for selecting the action. These are
strategic considerations, and thus not strictly required for the successful execution of an action.
Including such conditions would prevent an action from being selected even when the action could
be successfully executed in the environment.2

Preconditions do not always need to include all conditions that are required for the successful
execution of an action. Although it is good practice to provide complete action specifications,
sometimes there are pragmatic reasons for not providing all required pre-conditions. For example,
the precondition for the move action does not require that X is a block. Strictly speaking, the
precondition including the condition block(X) would result in a better match with constraints
in the Blocks World, as only blocks can be moved in this environment, and thus, adding the
block(X) condition would have resulted in a more complete action specification. However, when
efficiency is considered as well, it makes sense to provide a pre-condition that checks as few
conditions as possible. It may also be that a pre-condition is better readable when not all details
are included. We thus may trade off completeness of an action specification for efficiency and
readability. A developer should always verify, however, that by not including some of the actual
pre-conditions of an action the program still operates as expected. As we will see in Chapter 5,
the cognitive state queries of a rule that provide the reason for selecting a move action prevent the

1Note that because an agent may have false beliefs, the action may not actually be enabled in the environment.
As an agent does not have direct access to environments, instead it needs to rely on its beliefs about the environment
to select actions. From the perspective of an agent, an action thus is enabled if it believes it is. Environments may
throw exceptions when an agent attempts to execute an action that it is not allowed to at that moment.

2Because a pre-condition is checked against the beliefs of an agent, it may not actually be the case that an
action can be performed successfully. Still, a pre-condition should specify those conditions that would guarantee
successful execution. In that case, since an agent does not have direct access to the environment, for all the agent
knows, the action can be performed successfully if it believes that the pre-condition holds.
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variable X from ever being instantiated with table. Therefore, dropping the condition block(X)
from the pre-condition does not do any harm.

Actions are enabled when their pre-conditions hold. But there is one additional general con-
dition that must be fulfilled before an action is enabled: all action parameters and variables in
the action’s post-condition must be fully instantiated to ensure that the action and its effects are
well-specified. That is, all free variables in parameters of an action as well as in the post-condition
of the action must have been instantiated with ground terms. This is also the case for built-in
actions. For the move action specified above, this implies that the variables X, Y, and Z need to
be instantiated with ground terms that refer either to a block or to the table.

Completely Instantiated Actions
The reason that the variables that occur in an action’s parameters or in its postcon-
dition must be instantiated with ground terms is that otherwise it is not clear what it
means to execute the action. What, for example, does it mean to perform the action
move(X,table) with X a variable? One option would be to select a random item and
try to move that. Another would be to try and move all items. But shouldn’t we exclude
tables? We know intuitively that the move action moves blocks only. But how would
the agent program know this?
The classic STRIPS-style specification [37] requires that all variables in the pre-
condition also appear in the parameters of the action. This requires that instead of the
move(Block,To) action specified above an action moveFromTo(Block,From,To)
must be specified as the From variable needs to included in the action’s parameters. This
restriction is lifted in Goal and no such constraints apply. In order to make sure that
an action’s post-condition is closed, it is required, however, that all variables that occur
in the post-condition also occur in either the pre-condition or the action’s parameters.
Note that any variables in action parameters that do not occur in the pre-condition must
be instantiated by other means before the action can be performed; in an agent program
this can be done by using cognitive state queries.

4.1.2 Post-conditions
The keyword post indicates that what follows is a post-condition of the action. Post-conditions
are conjunctions of literals, i.e., facts or negated facts. Each variable in a post-condition must also
occur in one of the action parameters or in the action’s pre-condition. This is required to make
sure that all variables in the post-condition will be instantiated when the action is performed.
A post-condition specifies the effect of an action. Action post-conditions are used to update the
cognitive state of an agent in Goal. A post-condition φ is used to update the beliefs of an agent
such that the agent believes after the update that the effects φ of the action hold.

The agent’s beliefs are updated by adding the positive literals (facts) in the post-condition
to the agent’s belief base and by removing the negative literals in the post-condition from the
beliefs. A post-condition can also be thought of as an add/delete list, as in STRIPS-style action
specifications [19, 32]. Positive literals in a post-condition are part of the add list and all facts φ
that occur in negative literals not(φ) are part of the delete list. The effects of performing an
action on the cognitive state of the agent are that the belief base is updated by first removing all
facts that are part of the delete list and thereafter adding all positive literals in the add list. Note
that adding a fact to the belief base that is already present in it has no effect, as any fact will only
appear once (i.e., the bases in an agent’s state are sets). Deleting a fact that was not present to
begin with also has no effect.

The postcondition not(on(X,Z)), on(X,Y) in the action specification for move(X,Y)
consists of one negative and one positive literal. The add list in this case thus consists of a single
atom on(X,Y) and the delete list consists of the atom on(X,Z). It is important to remember
that all variables must have been instantiated when performing an action and that both on(X,Y)
and on(X,Z) are only templates. Immediately after the agent decides to perform the action, the
agent’s state is updated by first removing all atoms on the delete list and thereafter adding all
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atoms on the add list. For the move action this means that the current position on(X,Z) of
block X is removed from the belief base and thereafter the new position on(X,Y) is added to it.

Instantaneous and Durative Actions Performing an external action such as the move action
not only updates the agent’s state, using the action’s post-condition, but also means that the action
is sent to the environment that the agent is connected to. The environment forwards the action
to the entity that the agent is connected to. The entity thus is requested to perform the action
in the environment. As all of this and performing the action itself may take time, it is important
to distinguish between so-called instantaneous and durative actions. The difference between
the two is that the time needed to execute an instantaneous action can be neglected but the time
needed to execute a durative action cannot. For all purposes, the effects of an instantaneous action
are realized immediately when the action is performed. By default, you should assume that an
external action executed in an environment is durative with only very few exceptions (which should
be indicated in the documentation for an environment). In the classic Blocks World environment
we may assume that the effects of a move action are realized instantaneously. This is not the case
for durative actions, such as navigating a robot or moving a gripper to a block. It takes time to
realize the effects of durative actions.

This has important implications for the specification of post-conditions. For instantaneous
actions, we can specify the effects of the action in a post-condition. We cannot do the same for
durative actions, however. The post-condition of an action is immediately used to update the
agent’s state. Performing this update for durative actions, however, would result in the agent
believing that the effects have been achieved before they have actually been achieved. This is
undesired and for this reason we cannot specify the effects of a durative action in the post-condition
of its action specification. There is a second reason why we cannot always reliably specify the
effects of an action in its post-condition: The effects of a durative action might never be realized
because the action might fail, e.g., when an agent cannot navigate somewhere because obstacles
prevent it from going there.

As a rule, we therefore use empty, or better true, post-conditions for durative actions. Gen-
erally speaking, it is only useful to specify the post-conditions of internal actions. Only in very
special cases where external actions can be treated as instantaneous actions, such as the move
action in the Blocks World, we should specify action effects in the action’s post-condition. In all
other cases, the effects of external actions need to be perceived by the agent in the environment
(see Chapter 6).

Closed World Assumption (Continued) The STRIPS approach to updating the state of an
agent when an action is performed is based on the Closed World Assumption. It assumes that the
database of beliefs of the agent consists of positive facts only. Negative information is inferred by
means of the Closed World Assumption (or, more precisely, negation as failure if we use Prolog).
Negative literals in the post-condition are taken as instructions to remove positive information
that is present in the belief base. The action language ADL does not make the Closed World
Assumption and allows to add negative literals to an agent’s belief base [37].

4.1.3 Updating an Agent’s Goals
Performing an action may also affect the goal base of an agent. If an agent, after performing
an action, comes to believe that a goal has been completely achieved, that goal is automatically
removed from the agent’s goal base. This automatic removal of a goal that has been achieved is
based on the fact that a rational agent should not invest any resources, whether energy or time,
into achieving a goal that already has been realized.

Goals that have been achieved as a result of performing an action are removed but only if they
have been achieved completely. A goal is achieved only when all of its sub-goals are achieved. An
agent should not drop any of these sub-goals before achieving the overall goal that they are part
of has been achieved. Removing sub-goals instead of a complete goal from an agent’s goal base
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would make it impossible for the agent to ensure that all sub-goals of a goal are achieved at one
and the same moment in time.

The removal strategy that only removes a goal when it has been achieved completely imple-
ments a so-called blind commitment strategy [35]. Agents should be committed to achieving
their goals and should not drop goals without reason. The default strategy for dropping a goal
therefore is strict: Only do this when the goal has been completely achieved. This default strategy
can be adapted by the programmer for particular goals by using the built-in dropaction.

For example, assume an agent has the following belief and goal base:

beliefs:
on(b1,table). on(b2,b3). on(b3, table).

goals:
on(b1,b2), on(b2,b3), on(b3, table).

and successfully performs the action move(b1,b2). By updating the state with the action’s
post-condition we would get the following state:

beliefs:
on(b1,b2). on(b2,b3). on(b3, table).

goals:
on(b1,b2), on(b2,b3), on(b3, table).

This cognitive state is not rational. The goal has been achieved, and, for this reason, should be
removed to avoid the risk of the agent wasting resources on trying to achieve the goal while it has
already been achieved. Goal implements this rationality constraint and automatically removes
achieved goals, which yields a new state in our example with an empty goal base:

beliefs:
on(b1,b2). on(b2,b3). on(b3, table).

goals:

4.2 Internal Actions Provided in the Language
In addition to the possibility of specifying internal actions, several internal actions are provided
as part of the Goal language. These actions include actions for changing the beliefs and goals of
an agent, for printing messages to the console, logging information to a file, for communicating
information with other agents, and utilities for timing. We discuss these actions here except for
the send, subscribe, and unsubscribe actions that can be used to communicate a message
to other (sets of) agents, which is discussed in Chapter 8.

Modifying an Agent’s Cognitive State There are four internal actions available for modi-
fying an agent’s cognitive state. First, the action:

adopt(qry)

can be used to adopt or add a new goal qry to an agent’s goal base. qry should be a conjunction
of facts; negative literals are not allowed. In line with our discussion about Prolog databases
before, only conjunctions of positive literals can be added to an agent’s goal base. The action
adopt(not(fact)) is not allowed and would generate a syntax error. The adoptaction can
only be used to add a goal and cannot be used to remove one. Recall that a goal is automatically
removed when it is completely achieved. If everything works as planned and the agent has been
programmed correctly to achieve its goals, an agent thus would never have to remove a goal
manually. Because an agent does not always have full control over what happens, however, it may
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sometimes be necessary to reconsider a goal and drop it manually. If an agent considers that a
goal it has is no longer feasible, the drop(qry) action can be used to remove that goal. It is
considered best practice to limit the use of the dropaction as much as possible. It should only be
used to remove goals that an agent comes to believe are no longer feasible.

An adopt(qry) action be performed if qry is not believed and qrt is not implied by any
of the goals of an agent. That is, the pre-condition of an adoptaction is that the agent does not
believe that qry holds and does not have a goal qry. In other words, to perform adopt(qry) we
must have not(bel(qry)), not(goal(qry)). The reason is that it is not rational to adopt
a goal that has already been achieved nor to add a goal that follows already from the (other) goals
of an agent. The effect of an adoptaction is that qry is added as a single, new goal to the goal
base.

The action:

drop(qry)

can be used to drop or remove one or more goals from an agent’s goal base. qry should be
a conjunction of literals; negative literals thus can be used. The dropaction can always be
performed, i.e., its pre-condition is true. The effect of a dropaction is more subtle. Informally, a
drop(qry) action removes each goal that implies qry. More precisely, any goal from which in
combination with the agent’s knowledge qry can be derived is removed from the agent’s goal base.
For example, if on(b1,b5) follows from a goal in the goal base, the action drop(on(b1,b5))
would remove that goal. In the example of Figure 3.3, the single goal present in the goal base
would be removed by this action.

We now turn to actions to change the belief base of an agent. The action:

insert(upd)

can be used to insert upd into the agent’s belief base. upd should be a conjunction of literals.
The insertaction can always be performed. The update performed by an insertaction is
the same as that performed by applying an action’s post-condition. The insertaction adds
all positive literals that occur in upd to the belief base of the agent and removes all facts that
occur in negative literals in upd from the belief base. For example, insert(not(on(b1,b2)),
on(b1,table)) removes on(b1,b2) from the belief base and adds on(b1,table). As a
result, after performing an insert(upd) action an agent believes upd.

Note that the goal base may also be modified if by performing the update the agent would
come to believe that one of its goals has been completely achieved; in that case, the goal is removed
from the goal base, as discussed above.

Finally, the action:

delete(upd)

can be used to delete upd from the agent’s beliefs. The deleteaction is kind of the inverse of
the insertaction: Instead of adding literals that occur positively in upd it removes such literals,
and instead of removing negative literals it adds such literals.

Strictly speaking we could do without the deleteaction as we can achieve the same result with
an insertaction. Using both actions, however, makes it easier to read a program. We consider
it best practice to use insertonly for adding facts and use deleteonly for removing facts. For
example, instead of writing insert(not(on(b1,b2)), on(b1,table)), it is better to use a
combination of the two actions insert(on(b1,table)) and delete(on(b1,b2)). Multiple
actions can be combined by the + operator. Using this operator we can write:

insert(on(b1,table)) + delete(on(b1,b2))
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which would have exactly the same effect as the single action insert(not(on(b1,b2)),
on(b1,table)). The + operator can be used to combine as many actions as needed. As a
rule of thumb, however, it is best practice to at most include one external action in a list of
actions that are combined by +. The actions combined by + are executed in order of appearance
(see also Section 5.2).

One thing to note about the delete(upd) action is that it removes all positive literals that
occur in upd. The deleteaction thus does not support minimal change in the sense that no more
information is removed than is strictly necessary to make sure that the agent does not believe upd
any more. For example, delete(p, q) removes both p and q instead of only removing either
p or q which would be sufficient to remove the belief that p and q both are true.

Printing a Message We have already seen how to use the printaction in Chapter 1. The
action:

print(term)

prints term to the standard output console. term can be any term, including a variable, as long
as the term is closed when the printaction is performed.

Logging to a File The action:

log(parameter)

can be used to write logging information to a file. The parameter supports the following options:

• log(bb) means that the contents of the agent’s belief base are written to the log file;

• log(gb) means that the contents of the agent’s goal base are written to the log file;

• log(pb) means that the contents of the agent’s percept base are written to the log file;

• log(mb) means that the contents of the agent’s message base are written to the log file;

• log(parameter) for any other parameter than in the previous bullets means that the
parameter itself is written to the log file.

Because logging is platform dependent, more information on this action can be found in the User
Manual [31].

Sleeping The action:

sleep(term)

sleeps the agent for term milliseconds, i.e., it freezes the agent for that amount of time. After the
sleep, the agent will continue executing as if any action has just been performed.

Timers The action:

starttimer(name,interval,duration)

can be used to start a timer. If a timer with the given name already exists, it will be replaced. A
timer in Goal will generate a percept on each interval milliseconds, starting from the call of the
action until (and including) duration milliseconds have elapsed. Such percepts will be of the form:
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timer(name,elapsed)

where elapsed is the number of milliseconds of the current interval; elapsed will thus always be a
multitude of interval (and it therefore does not make much sense to not make duration a multitude
of interval either). Note that if the cycles of an agent take longer than interval milliseconds, it
is possible to receive multiple timer/2 percepts at once. Moreover, if a timer did not reach an
interval, a timer percept will not be present for it.

For example, calling starttimer(example,1000,10000) will generate a percept every second,
thus creating a sequence of timer(example,1000), timer(example,2000), ... timer(example,4000)
percepts.

The action:

canceltimer(name)

can be used to cancel a timer (i.e., make it stop generating percepts) before its duration has ended.
If a timer does not exist or has already ended, a warning will be printed.

Like all other actions, internal actions must be closed when they are executed. That is, all
variables must have been instantiated with ground terms. This is also required for actions that
are combined by the + operator.

4.3 Notes
The strategy for updating an agent’s goals in Goal is a blind commitment strategy. Using this
strategy, an agent only drops a goal when it believes the goal has been achieved. In [35] and [15]
various other strategies are introduced. One issue with an agent that uses a blind commitment
strategy is that such an agent rather fanatically commits to a goal. It would be more rational if
an agent would also drop a goal if it would come to believe that the goal is no longer achievable.
For example, an agent may drop a goal to get to a meeting before 3PM if it misses the train.
However, providing automatic support for removing such goals when certain facts like missing a
train are believed by the agent is far from trivial. Goal provides the drop action which can be
used to remove goals that are no longer deemed achievable by writing rules with such actions as
conclusions.
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4.4 Exercises
4.4.1

We revisit the “Hello World" agent that was developed in Chapter 2 in this exercise. The
aim is to provide an action specification for the printText action that can be used to
keep track of the number of lines that have been printed instead of the code in the event
module that was used in Chapter 2. In other words, you should now make sure that the
agent’s beliefs remain up to date by means of the action specification for printText. This
will require you to write another precondition and postcondition than true for the action
printText.

• Start by removing the use case for the event module in the agent definition.

• Specify a new precondition for printText that retrieves the number of lines printed
until now and add 1 to this number to compute the updated number of lines that will
have been printed after performing the action.

• Specify a new postcondition that removes the old fact about the number of lines that
were printed and inserts the new updated fact.

Test your agent and verify that it is still operating correctly.



Chapter 5

Cognitive Decision-Making Agents

Using the cognitive state and action specification program components introduced in the previous
chapters, we will define an agent that is able to solve Blocks World problems. We need to specify
one more important part: the decision-making of an agent. To that end, we will introduce decision
rules for selecting actions in this chapter. These rules allow us to create cognitive decision-making
agents, i.e., agents that derive their choice of action from their beliefs and goals. We will also learn
how to write basic modules. Modules are program components that are used to combine all the
other parts: they include the necessary use clauses for importing the cognitive components and
action specifications that an agent needs to make decisions using rules. We will also see how to
create an agent definition. In order to be able to run the Blocks World agent, we will look at
how to write a basic multi-agent program.

5.1 Solving Blocks World Problems
Our goal is to develop a strategy for an agent that effectively solves Blocks World problems. A
strategy determines what the agent should do next. In order to find a good strategy for the Blocks
World, we now first continue our discussion of this environment introduced in Chapter 3. The
Blocks World is a simple environment that consists of a finite number of blocks that are stacked
into towers on a table of unlimited size, where each block has a unique label or name. Blocks obey
a simple set of “laws”: a block is either on top of another block or it is located somewhere on the
table, a block can be directly on top of at most one other block, and there is at most one block
directly on top of any other block.

A solution to a Blocks World problem requires a strategy for deciding which block to move and
where to move it to. In our version of the problem, we do not worry about the exact positioning
of towers on the table. Any configuration where the desired towers are positioned somewhere on
the table is ok. We will continue with the example problem illustrated in Figures 3.1 and 3.2 and
use the specification of knowledge, beliefs, and goals in Chapter 3. We will also use the action
specification for the move action of Chapter 4.

There are some basic concepts and insights that help solving a Blocks World problem. First, a
block is said to be in position if the position of the block in its current state corresponds with the
goal state. A block’s position only corresponds with the goal state if all blocks below it (if any)
are also in position. A block that is not in position is said to be misplaced. Recall our definition
of this concept in Chapter 3. In our example problem illustrated in Figures 3.1 and 3.2, all blocks
except for block 3 and 7 are misplaced. Only misplaced blocks have to be moved in order to solve
a Blocks World problem. The action of moving a block is called constructive if in the resulting
state that block is in position. Observe that a constructive move always decreases the number of
misplaced blocks. Also note that it does not make sense to move a block on top of another block
if that move is not constructive. We would need to move that block again at a later time. But
worse, it limits our options as it prevents us from moving the block that it is moved on top of.

44
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Because there is no limit to the number of blocks that fit on the table, it is therefore always a
better option to move the block to the table.

Blocks World Problems Can Be Hard We will develop a good, not an optimal,
strategy for solving Blocks World problems. The performance of an agent that solves
Blocks World problems is measured by means of the number of moves it uses to transform
an initial state or configuration into the goal state. An agent performs optimally if it
is not possible to improve on the number of moves it uses to reach a goal state. The
problem of finding a minimal number of moves to a goal state is also called the optimal
Blocks World problem. This problem is NP-hard [20]. See [24] for an approach to define
heuristics to obtain near-optimal behaviour in the Blocks World in an extension of the
Goal language.
What makes it hard to solve some Blocks World problems optimally, is that it is not
always possible to make a constructive move. If a constructive move cannot be performed
in a configuration, that Blocks World configuration is said to be in a deadlock [41].
A special case of deadlock is where a block is in a self-deadlock. That is the case if
it is misplaced and above another block which it is also above in the goal state; for
example, block 1 is a self-deadlock in Figure 3.1. The concept of self-deadlocks, also
called singleton deadlocks, is important, because on average nearly 40% of the blocks
are self-deadlocks [41].

5.2 Decision Rules
Agents need to make decisions on what to do next. In the Blocks World, a decision must be made
where to move a block to, for example, whereas a mobile robot controller agent must decide where
to navigate to or whether to pick up something with a gripper or not. Such a decision depends on
the current state of the agent’s environment as well as general knowledge about this environment.
In the Blocks World, an agent needs to know what the current configuration of blocks is and needs
to have basic knowledge about such configurations, such as what a tower of blocks is, to make
a good decision. A decision to act will usually also depend on the goals of the agent. In the
Blocks World, a decision to move a block on top of an existing tower of blocks would be made, for
example, if it is a goal of the agent that the block sits on top of that tower. In a robotics domain,
it might be that the robot has a goal to bring a package somewhere, and therefore picks it up.

Decision rules provide an agent with the know-how why and when to perform an action. To
select an action, an agent needs to be able to inspect its knowledge, beliefs and goals and specify
which action to select. Therefore, decision rules are of the form:

if csq then action.

The condition csq of a rule is a cognitive state query (Chapter 3) and action is any action (Chapter
4) that the agent can perform. The action of a rule can be an internal action made available by
the programming language or specified by a user, or an external action that is made available by
an environment that the agent is connected to.

The cognitive state query in a rule determines whether the corresponding action may be con-
sidered for execution or not. The query is a condition on the agent’s state that provides a reason
for selecting the action. An agent thus decides which action to perform next based on its cognitive
state. This is why we also say that an agent derives its choice of action from its beliefs and goals.

We need to write decision rules for solving a Blocks World problem. This means specifying
the reasons why and situations when to perform a move action. We also need to specify which
move action to perform, e.g., move a block to the table or onto another block. There are many
strategies for solving a Blocks World problem. We note that because the table always has room
for a block it is never necessary to move a block more than twice. We should thus do better than
making two moves per block. One simple strategy is to first move all blocks to the table and then



CHAPTER 5. COGNITIVE DECISION-MAKING AGENTS 46

start building towers. This is called the unstacking strategy. This is not an optimal strategy but
requires on average only about 1.2 moves per block. We will slightly improve on this strategy
by using the concepts of a constructive move and misplaced block. The idea is to always make a
constructive move if possible, and to otherwise move a misplaced block to the table. This avoids
moving a block that can be put in position more than needed and only resorts to the unstacking
strategy when there is no other alternative. Using the cognitive state queries for a constructive
move and misplaced in Chapter 3, we obtain the following rules that implement this strategy:

if a-goal(tower([X, Y| T])), bel(tower([Y| T])) then move(X,Y).
if a-goal(tower([X| T])) then move(X, table).

If the pre-condition of an action holds (in the current state of the agent), we say that the
action is enabled. If a cognitive state query of a rule holds and the action of the rule is enabled,
we say that the rule is applicable. This means that the action is an option. Rules in this sense
generate options.

The first rule generates the option to move a block X on top of another block Y if the agent
wants to construct a tower [X, Y| T] and believes that the part [Y | T] is already in place.
It thus generates the option to make a constructive move. The second rule generates the option
to move a block to the table if the agent wants that block to be part of a tower [X| T]. It thus
generates the option to move a block to the table if that block is misplaced.

Rules with Composed Actions It is often useful to allow an agent to select more than one
action using only a single decision rule. This can be done by means of the + operator in Goal.
Multiple actions that are combined using + also is called a composed action or a combo-action.
Two examples are:

insert(on(b1,b2)) + delete(on(b1,b3))

print("Going up") + goto(5, up)

Both examples combine two actions but there is no limit to the number of actions that can be
combined using +. The first example combines the two internal actions insert and delete.
The first action is used to insert a new fact about the position of block 1 and the second action is
used to remove the fact on(b1,b3) from the belief base. The second composed action consists
of the internal printaction and the environment action goto that is available in the elevator
simulator. The printaction is used to print the string to the console (which is useful, e.g., for
debugging purposes). The goto action makes the elevator move to a particular floor.

The actions that are part of a composed action may be put in any order in the action part of
a rule. The actions are executed in the order they appear. It is not guaranteed that all actions in
a combo-action are all performed. This depends on the pre-conditions of each action, which are
evaluated when the action is about to be performed. For example, in the second combo-action
above, the goto action may not be performed if its pre-condition does not hold. The printaction
can always be performed.

As a result, several things can happen when evaluating a rule with a combo-action. For
example, when evaluating the rule:

if bel(clear(b1)) then adopt(on(b1,b2)) + move(b1,b2).

the following things can happen:

• the rule is not applicable because clear(b1) is not believed,

• the rule is not applicable because the agent believes on(b1,b2) and, as a consequence, the
pre-condition of the adoptaction fails,

https://github.com/eishub/ElevatorSim
https://github.com/eishub/ElevatorSim
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• the rule is applicable, adopt(on(b1,b2) is executed, but the move action is not because
its pre-condition fails, because block 2 is not clear (note that the rule condition already
checks if block 1 is clear), or

• the rule is applicable, adopt(on(b1,b2)) is executed, and thereafter the move action is
executed (and the goal just adopted has been achieved and is thus removed again).

5.3 Combining Everything in a Module
A rule uses various language elements that are specified elsewhere. The cognitive state query of a
rule uses predicates specified in KR files. The action part of a rule uses the definition of an action
in an action specification file. An agent needs all these elements together for executing a strategy
specified by decision rules. All these elements are combined in a module:

use bwknowledge as knowledge.
use bwbeliefs as beliefs.
use bwgoals as goals.
use bwmove as actionspec.

exit = nogoals.

define constructiveMove(X,Y) as a-goal(tower([X,Y| T])), bel(tower([Y|T])).
define misplaced(X) as a-goal(tower([X| T])).

module stackBuilder {
if constructiveMove(X,Y) then move(X, Y).
if misplaced(X) then move(X, table).

}

A module file is a separate program file containing a single module. A module has a name
and a program section that contains rules. The module file for our module should be named
stackBuilder.mod2g. The program section specifies the strategy that is used by the agent
to select an action by means of decision rules. As these are all the rules, the agent will only
generate options that are either constructive moves or move misplaced blocks to the table. The
reader is invited to verify that the agent will never consider moving a block that is in position.
Furthermore, observe that the cognitive state query of the second rule is weaker than the first.
In common expert systems terminology, the first rule subsumes the second as it is more specific.
It follows that whenever a constructive move move(X, Y) is an option, the action move(X,
table) is also an option.

At the start of a module file, use clauses must be specified that provide definitions for the
predicates used (see Chapter 3) and specifications for the actions used (see Chapter 4). The only
predicate used is the tower/1 predicate, which is defined in the bwknowledge.pl file. This
file is included by the first use clause of the module. Note that the file extension is not specified;
the system automatically uses the extension to check which knowledge representation language is
used. The as part of a use clause indicates which state component should be initialized. External
actions and user-specified internal actions that are used must specified in an action specification
file. If no action specification use clause is present, the agent can only perform actions that are
provided by the programming language itself. We include the bwmove.act2g file of Chapter 4
in which we specified the move action that is used in the decision rules of the module.

The two use clauses that follow the first are not required. They have been included to initialize
the cognitive state of the agent with initial beliefs and an initial goal, respectively. We have used
the KR files bwbeliefs.pl and bwgoals.pl that we created in Chapter 3. As we have seen
in Chapter 3, the initial and goal state define a Blocks World problem; these two use clauses thus
specify the problem the agent should solve. The use clause for the action specification bwmove is
required because the move action is used in the module.
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A module file can also contain macros. Macro definitions must be provided after the use
clauses by using the define keyword. Two examples are provided above that define the concept
of a constructive move and a misplaced block. A macro has a name and (optional) parameters.
Parameters must be variables which must occur in the definition that follows the as keyword.
The definition itself is a cognitive state query. A macro can be viewed as an abbreviation for that
cognitive state query. Macros can be used in the conditions of rules as illustrated in the module’s
rules. They serve to increase the readability of a program.

A module can also use a rule order and an exit condition but we delay discussion of these
module options to Chapter 7.

5.4 Defining Agents in a Multi-Agent Program
We are close now to an agent that can solve a Blocks World problem. The module that we have
defined above is pretty much all we need for creating the agent. The only thing left to do is
to define this agent. Agents are defined in a multi-agent program. A multi-agent program also
specifies the environment that an agent is connected to and a launch policy for launching agents.
We use the following program file called BlocksWorld.mas2g:

use "blocksworld-1.1.0.jar" as environment with start=[2,3,0,5,0,7,0].

define stackBuilder as agent {
use stackBuilder as main module.

}

launchpolicy {
when * launch stackBuilder.

}

Figure 5.1: A MAS file that connects agent stackBuilder to the Blocks World

An (external) environment is specified at the beginning of a multi-agent program by a use
clause. This use clause should have as environment as use case. The environment reference
in our multi-agent program includes a Blocks World environment by means of specifying a path
name to an environment file (the path to a jar file relative to the multi-agent program file or
MAS file). Using the with keyword allows for passing one or more initialization parameters to
the environment, in this case the initial configuration of blocks. The parameters that can be
specified depend on the environment. The start parameter for the Blocks World requires a list
of numbers, where each number ni indicates that block i sits on top of block ni (or the table if
ni = 0). In the MAS file above, for example, block 1 sits on top of block 2 which sits on top of
block 3 which sits on the table.

The environment use clause is followed by a single agent definition. An agent definition specifies
the name of the agent and must have a definition section with use clauses that reference modules
needed for creating the agent. In our case, we only have a single use clause that indicates that
the stackBuilder module that we created in the previous section should be used as main
module. The main module is the module that contains the main decision rules of the agent. A
use clause in an agent definition can have three use cases: either main, event, or init. The
only requirement an agent definition must satisfy is that it contains at least a main module or
an event module.

Finally, the MAS file contains a launch policy section with one launch rule for launching
an agent. This rule will build an agent named stackBuilder using the agent definition for
stackBuilder when the gripper becomes available in the Blocks World. We will discuss this
part of a MAS file further in Chapter 6.
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5.5 Executing an Agent
Assuming that we have included all files that we need, including the environment file, in a single
project folder, we are now ready to execute the multi-agent program. You can run the multi-agent
program (see the User Manual [31] on how to do this) but the result is too fast gone again to see
what happened. It is more useful to start the program in Debug mode (again, check the User
Manual on how to do that). If you start the multi-agent program in Debug mode, the system is
initially paused. This allows you to inspect the cognitive state of the agent, and to execute the
program in a step-by-step fashion. You should see a window that has popped up and displays the
initial state of the Blocks World of Figure 3.1. You also should see that an agent has been created
that is called stackBuilder and that an environment process called blocksworld-1.1.0 has
been launched. Both agent and environment should be paused.

It is useful to trace the behaviour that the agent that we have created once in detail to
understand what happens. Before we start, we should not forget to put the Blocks World in
running mode. (You should check for yourself what happens if you forget to do so.) Select the
environment process and put it in running mode. Now we are ready to step through the agent
program.

First inspect the cognitive state of the agent. You should find that all components except for
the percept base of the agent are empty. The percept base contains the facts that represent the
initial state of the Blocks World. We will use these in Chapter 6 to initialize the agent’s belief
base. As you may recall, we have chosen to initialize the agent’s beliefs by means of the Prolog
file bwbeliefs.pl here. This has not yet happened. The use clause that imports these beliefs
is applied when you step into the module. Do so now to see the results. You should not only see
facts in the belief base of the agent that represent the initial Blocks World state but also a goal
in the agent’s goal base that represents the goal state in Figure 3.2.

If you continue stepping through the agent program, you will find that the first decision rule
in module stackBuilder is not applicable. There is no constructive move that the agent can
make. The second decision rule is applicable and will select to move block 1 to the table. If you
continue stepping you will find that the first rule is selected again and the agent has begun its
second execution cycle. In this cycle, there is still no constructive move that can be performed,
and instead the agent will apply the second rule and move block 2 to the table. This move makes
it possible to move block 4. In the third execution cycle the agent will apply the first decision rule
and perform the constructive move that puts block 4 on top of block 3. The agent needs three
more cycles to achieve its goal. In these cycles the agent does the following:

• Execution cycle 4: moves block 5 onto block 2.

• Execution cycle 5: moves block 1 onto block 5.

• Execution cycle 6: moves block 1 onto block 5.

In cycle 6, the goal is achieved and removed from the agent’s goal base. At that moment, no new
cycle is started but the agent is terminated because of the exit condition nogoals that we added
in the stackBuilder module.

5.6 Summary
A module combines the different elements needed to create a cognitive decision-making agents.
Use clauses at the start of a module specify the required cognitive state components, e.g., the
knowledge, beliefs, and/or goals, and the action specifications used by the agent. The knowledge,
beliefs and goals of an agent are specified in KR files, e.g., Prolog files (see Chapter 3). Action
specifications specify the pre- and post-conditions of an action and are defined in an action spec-
ification file (see Chapter 4). A module’s program section consists of rules for selecting the
actions that the agent will perform. Decision rules are the rules that the agent uses to select
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which actions to perform to achieve its goals. These rules typically are part of a module that is
imported as main module.

A multi-agent program is a recipe for creating and launching agents. It also informs the
system which environment should be launched (if any). An agent definition in a multi-agent
program or MAS file specifies which modules should be used to create an agent.

5.7 Notes
The Goal programming language was first introduced in [26]. Previous work on the programming
language 3APL [25] had made clear that the concept of a declarative goal, typically associated
with rational agents, was still missing. Declarative goals at the time were the “missing link"
needed to bridge the gap between agent programming languages and agent logics [15, 35, 28].
The programming language Goal was intended to bridge this gap. The design of Goal has
been influenced by the abstract language Unity [14]. It was shown how to provide a temporal
verification framework for the language as well, as a first step towards bridging the gap. In [23] it
has been shown that Goal agents instantiate Intention Logic [15], relating Goal agents to logical
agents specified in this logic.

A set of decision rules is similar to a policy. There are two differences with standard definitions
of a policy in the planning literature, however [19]. First, decision rules do not need to generate
options for each possible state. Second, decision rules may generate multiple options in a particular
state and do not necessarily define a function from the (cognitive) state of an agent to an action.
In other words, a strategy of a Goal agent as defined by its decision rules does not need to be
universal and may under-specify the choice of action of an agent.1

The book Multi-Agent Programming [10] provides references to other agent programming lan-
guages such as 3APL, Jason, and Jadex, for example.

1“Universal” in the sense of [38], where a universal plan (or policy) specifies the appropriate action for every
possible state.



Chapter 6

Environments: Actions & Sensing

An underlying premise in much work addressing the design of intelligent agents or
programs is that such agents should (either implicitly or explicitly) hold beliefs about
the true state of the world. Typically, these beliefs are incomplete, for there is much an
agent will not know about its environment. In realistic settings one must also expect
an agent’s beliefs to be incorrect from time to time. If an agent is in a position to make
observations and detect such errors, a mechanism is required whereby the agent can
change its beliefs to incorporate new information. Finally, an agent that finds itself in a
dynamic, evolving environment (including evolution brought about by its own actions)
will be required to change its beliefs about the environment as the environment evolves.

Quote from: [11]

We connected the agent that we developed in Chapter 5 to an environment called the Blocks
World. The agent performed external actions to change the configuration of blocks in that world
but did not process the percepts that it received from the Blocks World. In this chapter we
will extend the agent and add rules that enable it to process percepts. We will introduce a new
operator perceptfor inspecting an agent’s percept base (see Figure 3.3). The move action of
the Blocks World could be treated as an instantaneous action (see 4.1.2). In this chapter we
will shift our focus to the more common durative actions.

6.1 Types of Environments
Percepts inform an agent about the state of the environment it is connected to. Only in very
special circumstances can an agent ignore this information. The Blocks World agent of Chapter 5
did not have to process percepts it received from the Blocks World because we could make several
simplifying assumptions about this environment. This allowed us to focus all of our attention
on the design of a strategy for selecting the right move actions. First of all, we could treat the
move action as an instantaneous action. That allowed us to specify the effects of the action in
a post-condition and update the cognitive state of the agent to reflect these changes immediately
when performing the action. Another important assumption that we used was that the agent has
full control. The agent has full control over the gripper and the gripper is the only way that
blocks can be moved in the Blocks World. Moreover, we could be sure that a block is moved
and the effects of the gripper are as expected. That is, the move action is deterministic. Full
control also means that we could assume that no other events or other agents would change the
configuration of blocks. That is, the Blocks world is static and cannot change if the agent does
not do something. Finally, we also assumed that the Blocks World is a single agent environment
and only one agent could make changes.

In summary, the Blocks World is a static, deterministic, single agent environment. In other
words, the Blocks World agent has full control. Because we could also treat the move action as
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instantaneous, we could disregard percepts. The agent could keep track of the configuration of
blocks simply by using its knowledge of the effects of the action move. We used the post-condition
of the action to represent this knowledge (see Chapter 4). The agent could keep track of the con-
figuration by updating its beliefs using that knowledge, i.e. by applying the post-condition of the
move action.

In most environments one or more of these assumptions do not hold. Most external actions
are durative, i.e. take time to complete, and we cannot use knowledge about action effects to
immediately update an agent’s beliefs about the environment. In the Tower World, a variant of
the Blocks World, it takes time before the gripper has moved a block as we will see below. An
agent also hardly ever has full control over its environment. The effects of actions are not always
certain and we thus cannot assume a deterministic environment. This is because actions may fail
or the effects of performing an action are not completely predictable, e.g. effects are stochastic.
In the Tower World the gripper does not always succeed to put a block at a particular position.
An environment can also be dynamic in the sense that things change without an agent doing
anything. In the Vacuum World, for example, dust can re-appear automatically. Finally, most
environments are multi-agent. In such environments more than one agent can make changes and
effect the environment. In the Tower World, for example, a user can also interact with the World
by using the mouse to move blocks.

Cognitive 
Agent 

Environment 
action 

percept 

entity 

entity 

entity 

entity 

Figure 1.2 (reprinted): Cognitive Agent Connected to Entity in Environment

6.2 Agents, Environments, and MAS Files
Agents are connected to controllable entities (see Figure 1.2) in an environment by means of an
environment interface. We say that agents are connected to an environment and to an entity
rather than being part of an environment. We use this terminology to emphasize the interface
that is present between the agent and the environment. The interface between the agent and the
environment is used to send requests to the entity to perform actions in the environment and to
receive percepts through the interface in order to observe (parts of) that environment.

The interface to an environment and the connections between agents and entities in an envi-
ronment are established by a Multi-Agent System (MAS) file. A MAS file is a recipe for launching
a multi-agent system. There are a number of tasks that are handled by a MAS file. A MAS file

https://github.com/eishub/vacuumworld
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creates an interface for connecting to an environment. An agent definition in a MAS file specifies
how to build an agent. A third task supported by a MAS file is that it specifies when to launch
an agent and add it to the multi-agent system. A MAS file also determines whether or not to
connect an agent to an environment.

Table 5.1 specifies an Extended Backus-Naur Form (cf. [39]) grammar of a MAS file. Type-
writer font is used to indicate terminal symbols, i.e. symbols that are part of an actual program.
Italic is used to indicate nonterminal symbols. [...] is used to indicate that ... is optional, | is used
to indicate a choice, and ∗ and + denote zero or more repetitions or one or more repetitions of
a symbol, respectively. The first clause of the grammar says that a MAS file consists of three
sections. The first section is an (optional) environment section. Specifying an environment is
optional because a agents can also be run without being connected to an environment. The second
section of a MAS file consists of one or more agent definitions. The third section is a launch
policy that specifies when and which agents to launch.

mas := [environment] agent+ policy
environment := use path as environment [with id = value (, id = value)∗] .
agent := define id as agent{ useclause+ }
useclause := use ref as usecase .
usecase := (init | event | main | shutdown) [module]
policy := launchpolicy{ launchrule+ }
launchrule := [when entity] launch instruction (, instruction)∗ .
instruction := id [with constraint (, constraint)∗ ]
entity := * | type = id | name= id
constraint := name = id | name = * | number = num | max = num
id := alphanumeral with underscores that starts with letter or underscore
num := natural number, starting from 0
value := double quoted string, numeral, or list of values between square brackets
ref := id (.id)∗

path := double quoted string containing a file path

Table 6.1: Multi-Agent System Grammar

An example MAS file is provided in Figure 5.1. This MAS file connects an agent named
stackBuilder that is built using the agent definition BWagent to the Blocks World. The MAS
file is similar to the one we already saw in Section 5.4 but it also has some minor but important
differences.

use "blocksworld-1.1.0.jar" as environment with start="bwconfigEx1.txt".

define BWagent as agent {
use stackBuilder as main.
use bwEvents as event.

}

launchpolicy {
when * launch BWagent with name = stackBuilder.

}

Figure 6.1: A MAS file that connects agent stackBuilder to the Blocks World

6.2.1 Environments
The first section of a MAS file is the environment section. This part of a MAS file consists of a
single use clause that specifies the environment that should be used. As the platform expects an
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interface file to be a jar file that implements the Environment Interface Standard (EIS), a path
to a jar file on the file system should be provided (between quotes). The path can be an absolute
reference or specified relative to the main project folder where usually the MAS file also is located.
If an environment use clause references an existing environment interface file, the environment
interface is loaded automatically when a multi-agent system is launched.

The Goal platform uses and requires a specific type of interface for connecting to environments
called the Environment Interface Standard (EIS) [3, 4]. EIS provides a toolbox that facilitates
the development of interfaces for connecting agents to environments. It also provides support
to manage the interaction of agent platforms such as Goal with environments. For example, it
provides support for requests to pause an environment. Sometimes interface and environment are
combined. The Blocks World is an example of such a combination. When creating the interface
to this world, the platform also automatically launches the environment itself, i.e., the graphical
interface displaying the current block configuration. The Blocks World for Teams (BW4T) envi-
ronment, however, has an interface implementation that is separate from the environment itself.
The environment is a server that agents can connect to using the interface.

Environment Initialization It is useful to configure an environment when it is launched. To
do this, several configuration parameters can be specified by using the with keyword followed
by a comma separated list of key-value pairs of the form key=value. The Blocks World supports
only one parameter: The start parameter.1 We already saw an example how to configure the
Blocks World. In Section 5.4 we provided a representation of an initial configuration in the form
of a list of numbers. Instead of a list we can also specify a path to a configuration file:

use "blocksworld-1.1.0.jar" as environment with start="bwconfigEx1.txt".

MAS Without Environment The environment section is optional and there does not need to
be an environment section in a MAS file. Agents need not be connected to and can run without
an environment. If no environment section is present, agents will not be connected to an entity in
an environment but still can be run (as any other program) as part of a MAS. This allows for a
“pure” form of programming with cognitive states (cf. Chapter 5). The MAS file for the Coffee
Factory MAS in Chapter 8 does not have an environment section, for example. But even when
an environment has been specified, an agent does not need to be connected to an entity in that
environment as we will see below.

6.2.2 Agent Definitions
The second part of a MAS file consists of agent definitions. An agent definition specifies which
modules are used to build the agent. An agent essentially is a set of modules where some module
have been given a specific function. An agent definition has a name id and consists of use clauses
that specify which modules should be used for the main decision-making of the agent, for event
processing, and for initialization. The use case of a use clause indicates the function of the module:
it must be either an init module for initialization, an event module for event processing, a main
module for decision-making, or a shutdown module for de-initialization (see also Chapters 1 and
7). For example,

define BWagent as agent {
use stackBuilder as main.

}

1Check the environment documentation to find out about the initialization parameters that are supported by
an environment.

https://github.com/eishub/BW4T
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is an agent definition with name BWagent that specifies that the module stackBuilder should
be used as main module. The agent does not have a module for event processing nor for initial-
ization. (See Section 2.4 for an example of an agent definition with an init module and below for
examples using an event module.) Note that adding the keyword module in a use case is optional;
e.g., we could have also written as main module.

Each agent definition must be referenced in the launch policy section that we discuss next. In
our example, the reference BWagent needs to be used in at least one launch rule.

6.2.3 Launching Agents
The third part of a MAS file consists of a launch policy. A launch policy consists of launch rules.
Launch rules are used for creating agents. Agents can be created either by an unconditional launch
rule when a multi-agent system is created, or by a conditional launch rule when a controllable
entity in the environment becomes available.

Connecting Agents to Entities A conditional launch rule is triggered when a controllable
entity becomes available in an environment and is used for connecting an agent to a controllable
entity. For example, the launch rule

when * launch BWagent with name=stackBuilder.

is triggered whenever a controllable entity becomes available. This rule launches an agent for any
entity that becomes available in the environment. The * in the condition of the rule matches with
any entity. If an entity becomes available in the environment, the launch rule triggers the creation
of a new agent and connects it to the entity. The agent definition BWagent will be used to create
the agent.

If a MAS has a use clause for an environment, the launch policy of that MAS file must have
at least one unconditional launch rule for connecting agents to entities in that environment.

Naming Agents The default baptising policy for naming agents is to use the name of the
agent definition. Agents created using the agent definition BWagent would be called BWagent,
BWAgent1, BWAgent2, etc.2 Note that a launch rule may be applied more than once and the
convention then is to add consecutive numerals to the name. The example launch rule above,
however, adds a name constraint to the rule by using the name keyword. A name constraint
can be used to provide the agent that is created with a different name in two ways. One way is to
specify another name explicitly that then will be used instead of the name of the agent definition.
Another way is to use the wild card symbol * and add the constraint name = *. In that case
the name of the environment entity will be used to name the agent. Using this constraint makes
it easier in an environment with many controllable entities to identify which agent controls which
entity in an environment.

Launch Conditions There are three kinds of conditions of a conditional launch rule. The wild
card condition * that we have seen triggers a rule each time that an entity becomes available. A
rule with a condition type = id is only triggered if an entity that has type id becomes available,
where id is a type of entity available in the environment. Finally, a rule with condition name =
id is only triggered if an entity with name id becomes available.

2The identifier used to name the agent needs to be a valid constant in the knowledge representation language
that is used to represent the agent’s state. If this is not the case, the identifier may be mapped onto a valid constant
automatically. For example, using a name that starts with a capital such as BWAgent will be automatically put
between single quotes and mapped onto ’BWAgent’ when using Prolog.
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Unconditional Launch Rules Agents can also be created without connecting them to an
environment. Unconditional launch rules create agents when a multi-agent system is launched.
An unconditional launch rule simply is a launch instruction of the form launch id where id is
the name of an agent definition. As before, launch constraints can be added to these rules.

To illustrate unconditional rules we use the Coffee Factory MAS because it is not connected
to an environment. We will discuss this example in more detail in Chapter 8 which is about
communication between agents.

define coffeemaker as agent {
...

}

define coffeegrinder as agent {
...

}

launchpolicy{
launch coffeemaker.
launch coffeegrinder.

}

This example contains two unconditional launch rules. All unconditional launch rules are ap-
plied when a MAS is launched before the MAS starts to execute. In our Coffee Factory example,
the first launch rule creates an agent named coffeemaker using the agent definition with the
same name and the second launch rule creates an agent named coffeegrinder.

Agents that are not connected to an environment can also be useful if there is an environment
and other agents are connected to entities in that environment. These agents even though not
connected to an environment can communicate with other agents that are connected to an envi-
ronment. Such an agent may be used, for example, as a central point of contact. It can collect all
available information about the environment from agents that are connected to that environment.
Because this agent maintains a global view it can be used to manage and instruct other agents
what to do.

Counting Constraints There are two types of constraint that can be added to a launch rule to
control the number of times that a rule is applied and the number of agents that are created when
a rule is applied. The number = n constraint can be used to create n agents at the same time
when a launch rule is applied. For example, if we want three coffee maker agents in the Coffee
Factory MAS, the following launch rule will achieve this:

launchpolicy{
launch coffeemaker with number = 3.
launch coffeegrinder.

}

The first launch rule will create three agents using the agent definition coffeemaker. The
names for these agents would be coffeemaker, coffeemaker1, and coffeemaker2. The
option to launch multiple agents at the same time facilitates launching large numbers of agents
without the need to specify a large number of different agent names. The number constraint can
also be used in combination with conditional launch rules. In that case all the agents that are
created will be connected to the single entity that triggered the rule. Each of these three agents
can ask the entity what it “sees” (the entity sends its current percepts when asked). Moreover, if
any of these agents performs an environment action, the entity will be requested to perform it.

The max = n constraint is used to control the number of times that a launch rule will be
applied. Each application of a launch rule is counted and the number of applications of a particular
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rule may be restricted to a certain maximum number. Each agent that is created by a rule counts
as one rule application. This means that if a number = m constraint has been specified as well
and m agents are created when a rule is applied, the count of how often the rule has been applied
is raised by m. The max constraint has precedence over the number constraint. Even if m > n
therefore never more than n agents will be created when a launch rule with these constraints is
applied. A rule that has reached its maximum number of applications can no longer be applied.

Rule Order Rules in a launch policy section are applied in the order that they appear. This
means that the first rule that can be applied will be applied. A different order of rules therefore
may generate a different set of agents. For example, consider the order of the following two launch
rules for a MAS that uses the Elevator Simulator:

launchpolicy{
when type = car launch elevator with max = 3.
when name = car0 launch elevator.

}

It may be that the last rule never gets applied because the first rule has already connected an
agent to the entity car0. As a result, when four carriages become available, it may be that only
three are connected with an agent because the first rule can be applied at most three times and
the last rule will not be applied. By reversing the order of the rules it is always possible to connect
four agents to a carriage, that is, if one of them is called car0.

6.3 The Blocks World with Two Agents
We have already seen that it is possible to connect more than one agent to an entity by using the
number constraint. This constraints allows to connect more than one agent of the same type to
an entity. It is also possible to connect more than one different type of agent to a single entity
by adding more than one launch instruction to a conditional launch rule. As an example, we will
connect the stackBuilder agent of Chapter 5 to the gripper in the Blocks World as well as
another agent that we call tableAgent. We extend the MAS file of Figure 5.1 with a new agent
definition for tableAgent and add a launch instruction to the launch rule to also connect this
agent to the gripper as follows:

use "blocksworld-1.1.0.jar" as environment with start="bwconfigEx1.txt".

define stackBuilder as agent {
use stackBuilder as main.

}

define tableAgent as agent {
use clearBlocks as main.

}

launchpolicy {
when * launch stackBuilder, tableAgent.

}

Figure 6.2: A MAS file that connects two agents to the gripper in the Blocks World

The environment section uses a configuration file instead of a list of blocks. The agent definition
for stackBuilder is the same as in the MAS file of Figure 5.1. The most important change,
however, is that the launch rule now adds both stackBuilder and tableAgent to the gripper.
In order for this to work, we also added a new agent definition for the tableAgent which uses
the following module clearBlocks:

https://github.com/eishub/ElevatorSim
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use bwknowledge as knowledge.
use bwbeliefs as beliefs.
use clearBlocks as goals.
use bwmove as actionspec.

exit = nogoals.

module clearBlocks {
if bel(on(X, Y), block(Y)) then move(X, table).

}

This module is very similar to the stackBuilder module and reuses most components of
that module but with two changes. First, the decision rule of the module moves blocks to the table
that sit on top of another block. Second, the clearBlocks module uses the clearBlocks.pl
file as a goal, which provides the agent with a goal that all blocks should sit on the table:

on(b1,table), on(b2,table), on(b3,table), on(b4,table), on(b5,table),
on(b6,table), on(b7,table).

If we run the new MAS, both agents are connected to the gripper in the Blocks World. This
means that both agents gain control over the gripper and are able to move blocks. The first thing
you should note is that if two agents are connected to the same gripper that neither of these
agents has full control over the things that happen in the Blocks World any more. This does not
necessarily mean that the agents will not achieve their goals. As you may find by running the
agents several times, both agents come to believe most of the time that they achieved their goals
and (therefore) terminate successfully. Agents run in different threads and scheduling by the OS
determines how much time each agent gets, which explains why there are different runs.

Sometimes both agents achieve their goals, as witnessed by the following run:

[stackBuilder] performed ’move(b1, table)’.
[tableAgent] performed ’move(b1, table)’.
[tableAgent] performed ’move(b2, table)’.
[tableAgent] performed ’move(b4, table)’.
[stackBuilder] performed ’move(b2, table)’.
[tableAgent] ’on(b1,table) , ...’ has been achieved and removed ...
[tableAgent] performed ’move(b6, table)’.
[stackBuilder] performed ’move(b4, b3)’.
agent ’tableAgent’ terminated successfully.
[stackBuilder] performed ’move(b5, b2)’.
[stackBuilder] performed ’move(b1, b5)’.
[stackBuilder] ’on(b1,b5) , ...’ has been achieved and removed ...
[stackBuilder] performed ’move(b6, b4)’.
agent ’stackBuilder’ terminated successfully.

But more often than not even if the agents believe they have achieved their goals, at least one
of the agent failed to achieve its goal. Here’s an example run:

[tableAgent] performed ’move(b1, table)’.
[stackBuilder] performed ’move(b1, table)’.
[stackBuilder] performed ’move(b2, table)’.
[tableAgent] performed ’move(b2, table)’.
[stackBuilder] performed ’move(b4, b3)’.
[tableAgent] performed ’move(b4, table)’.
[stackBuilder] performed ’move(b5, b2)’.
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[tableAgent] ’on(b1,table) , ... ’ has been achieved and removed ...
[tableAgent] performed ’move(b6, table)’.
[stackBuilder] performed ’move(b1, b5)’.
agent ’tableAgent’ terminated successfully.
[stackBuilder] ’on(b1,b5) , ... , on(b4,b3) , ... ’ has been achieved ...
[stackBuilder] performed ’move(b6, b4)’.
agent ’stackBuilder’ terminated successfully.

This is a run where neither of the agents achieved its goal. Note that before the tableAgent
performs its last action the stackBuilder agent moves block 5 on top of 2 and the tableAgent
moves block 4 back to the table again right after stackBuilder moves it on top of block 3.
Still both agents are said to have ‘terminated successfully’. What has gone wrong is that both
agents believe they have achieved their goals but their beliefs are false as they do not correspond
with the actual block configuration. They have both acted as if they were in full control but when
another agent also makes changes to a block configuration, an agent can no longer maintain a
correct representation of this configuration just by starting with a correct representation of the
initial configuration and knowledge of the effects of the actions that the agent itself performed. An
agent that does not have full control can only maintain an accurate representation of the current
configuration if it also takes the changes made by other agents that it perceives into account. If
we give both agents control over the gripper in the Blocks World, each agent needs to sense and
process percepts received from the environment in order to make sure its beliefs are true and it
can achieve its goals.

6.4 Processing Percepts and the Event Module
By connecting an agent to an environment it gains control over (part of) that environment. An
environment makes available controllable entities and an agent can be connected to such an
entity (see also Chapter 1). An entity can “see” certain things in the environment and perform
certain actions. By connecting to an entity an agent obtains access to the capabilities of that
entity: It can perceive what the entity can perceive and can do what the entity can do in the
environment. An agent that is connected to an entity receives percepts to “see” what the entity
“sees” and request the entity to perform the actions it can perform. As we have seen, in the
Blocks World our agent was connected to a virtual gripper that could instantly move blocks. In
the Blocks World the agent receives percepts about the configuration of blocks. We will now fix
our two-agent Blocks World MAS and look at how we can make agents process these percepts.

Percepts The interface that connects agents to the gripper in the Blocks World provides percepts
of the form on(X,Y). We introduced this predicate ourselves in Chapter 3 to represent which block
is on top of another block or on the table. The percept has exactly the same meaning. The Blocks
World generates a percept for each fact (instantiation of) on(X,Y) that holds in the current block
configuration. This means that the set of percepts that an agent receives from the Blocks World
provides accurate and complete information about that world: If a block X is directly on top of
another block Y, a percept on(X,Y) will be received, and only then. Each time an agent requests
percepts from the entity it is connected to, moreover, such a complete set of percepts is sent by
the environment. For example, for the initial block configuration of Figure 3.1, the agent would
receive the following list of percepts:

on(b1,b2)
on(b2,b3)
on(b3,table)
on(b4,b5)
on(b5,table)
on(b6,b7)
on(b7,table)
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The Percept Base Percepts that are received from an environment are automatically inserted
in the percept base of the agent (see Figure 1.3). Each time that percepts are received this
percept base is first cleared from all content. The percept base thus always contains the most
recently set of percepts received from an environment. Percepts are represented in the knowledge
representation language that is used by the agent.

Percepts represent “raw data" received from the environment that the agent is connected to.
For several reasons an agent cannot simply add the new information to its belief base.3 One
reason is that the received information more often than not is inconsistent with the information
that is stored in the belief base of the agent. For example, receiving a percept on(b1,table)
that informs the agent that block b1 is on the table conflicts with a fact on(b1,b2) in the belief
base that block b1 is on block b2. The percept cannot be simply added to the agent’s belief base
as that would result in conflicting beliefs. The agent’s beliefs need to be updated instead and the
fact on(b1,b2) needs to be removed first before the fact on(b1,table) is added to the belief
base. A more pragmatic reason is that percepts may need further processing and interpretation.
It is more useful, for example, to insert the conclusion that there is a wall at a certain location
that blocks the agent from moving forward than to insert into the agent’s beliefs that the agent
bumped into a wall. In the Wumpus World a percept that the agent bumped into a wall also
means that the agent failed to move forward and the agent should make sure it still believes that
it is located at the position it was before it performed a move action.

Inspecting the Percept Base A special operator percept(qry) is available for inspecting
the percept base of an agent, where qry is a valid query of the KR the agent uses. For example,
an agent can query whether a percept has been received that block 1 is on block 2 by the cognitive
state query percept(on(b1,b2)). The perceptoperator works similar to the bel operator
but queries qry are evaluated only on the percept base and not also on the agent’s knowledge
base.

Rules for Processing Percepts An agent processes events by means of rules. We also call
rules that are used for event processing event rules. For event processing, however, typically a
type of rule is used that is different from the if csq then action-rule that we have used for
decision-making in Chapter 5. The reason is that an if-then-rule only is applied for one instance
of the rule. For processing a set of percepts of the same form such as on(X,Y), however, we want
to be able to process all of these percepts. We can do so by means of rules of the following form:

forall csq do action.

where csq is a cognitive state query and action is an action. A forall-do-rule is applied for
all instances for which the query csq and the pre-condition of action holds.

To process all of the percepts received from the Blocks World we want to insert all of these
into the agent’s belief base. We also check whether the agent does not already believe the fact, as
in that case there is no need to update the agent’s beliefs (which saves work). The following rule
can be used for this:

forall percept( on(X,Y) ), not( bel( on(X,Y) )) do insert( on(X,Y) ).

This rule is applied for all instances that match the query of the rule and inserts a percept
on(X,Y) in the agent’s belief base only if it is not already believed. Of course, we also need to
remove all incorrect beliefs from the agent’s belief base that do not match with any of the percepts.
Recall that the percepts provide complete information about the current block configuration. Any
fact in the agent’s belief base that does not match a percept therefore is incorrect and must be
removed. We can use the following rule for this:

3Recall that the knowledge base is static and cannot be modified. As the belief base is used to represent the
current state of an environment, percepts could have been used to directly modify the belief base of the agent. But
simply adding percepts to an agent’s belief base is not a good updating procedure.

https://github.com/eishub/WumpusWorld
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forall bel( on(X,Y) ), not( percept( on(X,Y) )) do delete( on(X,Y) ).

This rule checks whether a fact on(X,Y) is believed but is not perceived by the agent and
removes it in that case. The rule is applied for any fact that satisfies the rule’s condition.

Rules that use the perceptoperator are also called percept rules.

Event Module Rules for event processing should be called from the event module. the main
function of an event module is to process events and update the agent’s cognitive state accordingly.
The event module is called automatically after an agent finished a decision cycle when percepts
are received or other events have happened that trigger the event module (see next section below
for details). We therefore create a new module that contains the two percept rules for the Blocks
World. The code for this module can be found in Figure 6.3. The Prolog file bwknowledge is
needed to declare the on/2 predicate.

use bwknowledge as knowledge.

module bwevents {
forall bel( on(X,Y) ), not( percept( on(X,Y) )) do delete( on(X,Y) ).
forall percept( on(X,Y) ), not( bel( on(X,Y) )) do insert( on(X,Y) ).

}

Figure 6.3: Module for processing percepts from the Blocks World

There is an important difference between a module that is used as event module and a module
that is used as main module. By default a module evaluates rules in the order they appear and
applies only the first applicable rule. An event module evaluates and applies all applicable rules
in the order that they occur in the module. Each rule of a module used as event module thus is
evaluated. This facilitates the processing of percepts and events as an agent will want to process
all events that contain potential information for making the right action choice. This type of rule
evaluation ensures that the newly received information of blocks is inserted into the belief base of
the agent (by the first percept rule) and the old information is removed (by the second percept
rule).

Finally, we need to use the module bwevents and indicate that it should be used for processing
events. To indicate that we want to use the module bwevents as event module, we need to add
a use clause to the agent definitions of the MAS file for the Blocks World that specifies that the
module bwevents should be used as event module. The module can be used by both agents.

6.5 The Execution Cycle of an Agent
If an agent has a module for initializing the agent (init module), when the agent is launched this
module is executed first. An init module can be used to initialize the cognitive state of an agent
and to process percepts that are sent only once to an agent (such as information about a map that
can be navigated by an entity). Thereafter the agent executes a fixed cycle, until it terminates
(i.e., the main module exits, see 7.2.2), upon which the shutdown module (if any) is executed.
The approach for handling events, including percepts, is part of the execution cycle of an agent.
Figure 6.5 illustrates the steps that are part of the cycle.4

Step 1: Check for Events At the start of each cycle, events are automatically collected and
a check is performed whether any new events are available. As we saw in Chapter 1, receiving

4The execution cycle is also called a Sense-Plan-Act (SPA) or an Observe-Orient-Decide-Act (OODA) cycle.
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use "blocksworld-1.1.0.jar" as environment with start="bwconfigEx1.txt".

define stackBuilder as agent {
use stackBuilder as main.
use bwevents as event.

}

define tableAgent as agent {
use clearBlocks as main.
use bwevents as event.

}

launchpolicy {
when * launch stackBuilder, tableAgent.

}

Figure 6.4: A MAS file with two agents that use an event module

percepts, receiving messages, or performing an action all count as events. Events are new if they
were not also received or occurred in the previous cycle. The percept base of the agent is updated
by adding new percepts and removing old percepts that are no longer available. Similarly, the
message base of the agent is updated by adding new messages and removing all messages that
were received in the previous cycle. Another way of thinking about this is that the percept and
message base are always cleared first and then filled again with events received at the start of the
cycle.

Step 2: Process Events If a new event is available, the agent will execute its event module.
All rules in the module used as event module are evaluated in order and applied if applicable. If
the agent has no event module, this step in the cycle is skipped.

The event module is used for processing events. An agent that is connected to an environment
and receives percepts, should have an event module. Similarly, an agent that receives messages
from other agents (see Chapter 8) also should have an event module for processing these messages.
The module can also be used to update the cognitive state by adopting new or reconsidering
existing goals of the agent. This step should be used to update the agent’s state as a preparation
step for decision-making.

Step 3: Execute Main Module After processing events, the agent selects one or more actions
to perform by executing its main module. By default, the first applicable decision rule of the
module used as main module is applied. (The order that rules are evaluated can be changed by
the order option of a module.)

The main module is used for specifying the action selection strategy of an agent. If an agent
is connected to an environment, the main module should be used to select an external action that
can be performed in that environment.

Step 4: Request Environment to Perform Action External actions that the agent decides
to perform are sent to the environment that the agent is connected to. If an agent has no main
module, this and the previous step are skipped. An agent should at least have an event or a main
module as without either it would do nothing.

Step 5: Update Cognitive State The post-condition of an external action that is performed
in the previous step is used to update the cognitive state of an agent (see Chapter 4). After
updating the state, at the end of the cycle an agent removes goals have been completely achieved.
This implements a blind commitment strategy (see Chapter 5).
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Figure 6.5: Execution Cycle

6.6 The Tower World
So far we have been assuming that actions are instantaneous. We can no longer make this as-
sumption in the Tower World (see Figure 6.6) that we introduce in this section. The Tower World
is a variant of the classic Blocks World. The main difference is that in the Tower World moving
the gripper, and therefore moving blocks, takes time. Actions are durative in this environment.
Moreover, a user (you!) can also move blocks by dropping and dragging blocks using a mouse.
This means an agent that controls the gripper does not have full control. This introduces some
new challenges that our Blocks World agents are not able to handle.

The basic design of the Tower World is very similar to the Blocks World. All blocks have equal
size, at most one block can be directly on top of another, and the gripper available can hold at
most one block at a time.

Because an agent connected to the gripper in the Tower World does not have full control, it
will need to observe changes in the Tower World and process events very similar to the two Blocks
World agents that both were connected to the gripper above. The fact that actions in the Tower
World take time also provides an important reason why the agent needs to be able to sense its
environment.

6.6.1 Specifying Durative Actions
Actions that take time are called durative actions. Because they take time these actions are
not immediately completed as the instantaneous move action in the Blocks World is. The effects
of instantaneous actions are realized immediately when the action is performed. The effects of
durative actions, however, are established only after some time has passed. Moreover, these effects
are not certain because of other events that may take place while the action is performed. A user
may move blocks and insert them at arbitrary places back into the configuration of blocks while

https://github.com/eishub/tower
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Figure 6.6: The Tower World Interface

the agent tries to do so as well. A user may also remove a block from or put a block in the gripper.
Because the agent cannot be sure of pretty much anything any more there is a need to be able to
monitor the progress of an action. While performing an action of picking up a block, for example,
the agent needs to monitor whether it is still feasible to pick up the block while moving the gripper
into a position such that it can pick up and grab the block. If the block becomes obstructed in
some way or is moved to another position, moving the gripper to a particular location may no
longer make sense. If that happens, the agent should reconsider its actions and possibly its goals.

A Goal agent is able to monitor progress of actions because it does not block on an action
that it sends to the environment.5 While the action is being performed by its body, i.e., an entity
such as the gripper in the Tower World, the agent can monitor progress of the action by means of
the percepts it receives from the environment.

Action Specifications for Durative Actions All actions available in the Tower World are
durative. There are three actions that an agent can perform in the Tower World: An ac-
tion pickup(X) with one parameter for picking up a block X with the gripper, an action
putdown(X,Y) with two parameters for putting down a block X that the gripper holds on an-
other block Y, and a special nil action without any parameters that moves the gripper back to
the left-upper most corner of the graphical display of the environment.

Because these actions are durative and an agent does not block on an action when it performs
it, we cannot provide post-conditions for these actions. We cannot, for example, use the effect of
holding a block after picking it up as a post-condition of the pickup action. A post-condition is
applied immediately when an action is selected. If we would use the effect as post-condition, the
agent would immediately have a belief that the gripper holds a block while the action of picking
up the block is still only in progress by moving the gripper towards the block. But this belief
would simply be false as it takes time to pick up the block and only if the action is successfully
completed the effect will be realized.

5If an environment itself blocks on a request, and does not provide percepts to an agent while performing
an action, there is little that an agent can do to monitor progress. The typical situation, however, is that the
environment provides percepts while an action is being performed and the agent continuously receives information
that enables it to monitor progress.
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The solution that we provide is a simple one. Because we do not know and cannot know at
the time of starting to pick up a block what the results of the action will be, we use an empty
postcondition for the specification of the action. Instead of applying a post-condition the agent
will learn over time via percepts what the effects of its (durative) actions are and by monitoring
their progress will become aware of the resulting changes in the environment. We thus do not
specify the effects of durative actions in an action specification but, instead, depend on percepts
that the agent receives to conclude what happens in the environment.

Note that it is just as useful to specify pre-conditions for durative actions as it is for instan-
taneous actions. When an agent performs an action it is useful to inspect whether the necessary
conditions for performing the action hold. It thus makes sense, assuming that an agent maintains a
reasonably accurate representation of its environment, to add and verify such preconditions. Doing
so, as before, moreover provides a clear and reusable specification of actions in the environment.

Before we specify the three actions available in the Tower World, we briefly discuss the percepts
that an agent receives from this world. This is information that is useful and needed for providing
adequate action specifications. An agent connected to the Tower World receives three kinds of
percepts:

block(X)
on(X,Y)
holding(X)

It is good practice to use these same predicates for specifying the actions of the environment.
In the Tower World, there are two conditions that must hold to be able to perform a pickup
action: the block that needs to be picked up must be clear, and the gripper cannot already hold
a block. We will reuse the definition of the clear/1 predicate that we introduced in Chapter 3.
We can then use the following action specification for pickup:

pickup(X) {
pre{ clear(X), not(holding(_)) }
post{ true }

}

Although the post-condition could have been left empty and we could also have simply written
post{ }, it is better practice not to do so. Instead we have used true as post-condition to
indicate that we have not simply forgotten to provide a specification of the post-condition.

We can use the following action specification for putdown:

putdown(X,Y) {
pre{ holding(X), clear(Y) }
post{ true }

}

Because the nil action can always be performed, the action specification for this action is
very simple. This action has true as pre-condition and as post-condition.

nil {
pre{ true }
post{ true }

}

The action nil is somewhat unusual and rather different from the actions that we have seen
before in Blocks World-like environments. This action moves the gripper back to a particular
position in the graphical interface that comes with the Tower World (see Figure 6.6). This action
is of little use for achieving our main goal: creating particular block configurations. Also note
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that the predicates in terms of which percepts are provided by the environment to the agent are
unrelated to the exact position of the gripper. The idea is that when an agent has nothing to do
any more to achieve its goals we move the gripper back into its initial starting position. This then
will provide an indication that the agent is ready.

6.6.2 Percepts in the Tower World
The percepts that an agent receives from the Tower World are the same predicates block and on
that we have already seen in the Blocks World. The Tower World introduces one new predicate
holding(X). The holding predicate has one parameter; if holding(X) holds for some block
X, the gripper is holding that block, otherwise it is not holding any block.

As in the Blocks World, we can also assume full observability for the Tower World: Every
time percepts are received they provide correct and complete information about the state, i.e.
the configuration of blocks. Because we can assume this, and we know that the gripper is either
holding a block or not, we can apply the Closed World assumption to the predicate holding. In
other words, that is, if the agent does not believe the gripper is holding a block, we can conclude
that the gripper is holding no block.

For processing percepts in the Tower World, we can reuse the same percept rules for the Blocks
World that we introduced above for the on/2 predicate. We need to add rules for the block/1
and holding/1 predicates. The percept rules for these predicates follow the exact same pattern
that we used for the on/2 predicate above. We use one rule to add a percept to the agent’s beliefs
if the agent does not already believe the fact, and use a second rule for removing a belief that
does not match with what the agent perceives. We call the module that we want to use as event
module twevents.

use tower as knowledge.

% module for processing Tower World percepts; assumes full observability
module twevents {

forall bel( block(X) ), not(percept( block(X) )) do delete( block(X) ).
forall percept( block(X) ), not(bel( block(X) )) do insert( block(X) ).

forall bel( on(X,Y) ), not(percept( on(X,Y) )) do delete( on(X,Y) ).
forall percept( on(X,Y) ), not(bel( on(X,Y) )) do insert( on(X,Y) ).

forall bel( holding(X) ), not(percept( holding(X) )) do delete( holding(X) ).
forall percept( holding(X) ), not(bel( holding(X) )) do insert( holding(X) ).

}

The tower.pl file that is used as knowledge in the module re-uses the definition of the
tower/1 predicate from the Blocks World. The definition of the clear/1 predicate needs to
be changed, however, because a block that is being held by the gripper can also not be said to
be clear. We add a clause to exclude this. We also add a predicate above/2 that is useful for
defining when a block is misplaced. Finally, we need to declare the predicates block/1, on/2,
and holding that are used but not defined in the file.

:- dynamic block/1, on/2, holding/1.

% Assume there is enough room to put all blocks on the table.
% This is actually only true for up to 13 blocks in the Tower World.
clear(table).
clear(X) :- block(X), not( on(_, X) ), not( holding(X) ).
clear([X|_]) :- clear(X).

above(X, Y) :- on(X, Y).
above(X, Y) :- on(X, Z), above(Z, Y).

tower([X]) :- on(X, table).
tower([X, Y| T]) :- on(X, Y), tower([Y| T]).
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6.7 Performing Durative Actions
There are several issues that we need to consider when programming an agent that performs
durative actions. One question we need to think about is what happens when an environment has
been requested to perform a durative action and the agent requests the environment to perform
another action. Recall that an agent does not block on a durative action until it completes, and
should not do so, because it is important to monitor the progress of the action. If, for example,
in the Tower World the action putdown(X,Y) is not feasible any more because a user has put
another block than X on top of block Y, it is important to be able to interrupt and terminate
the action putdown(X,Y) and initiate another, feasible action instead. In this specific example,
it would make sense to send a new command to put block X on the table instead by means of
performing the action putdown(X,table). This works in the Tower World because durative
actions that are still in progress are cancelled if another action is performed. The durative action
is ended and the gripper immediately continues with performing the new action.

One example of cancelling is worth mentioning in particular: actions typically cancel actions of
the same type. As a rule, actions are of the same type if the action name is the same. For example,
the action putdown(X,Y) where Y ̸=table can be cancelled by the action putdown(X,table)
provides. Another example is provided by the move action in StarCraft. If this action is
performed continuously (the agent very quickly and repeatedly instructs a bot to perform this
action) with different parameters, the bot being instructed to do so actually comes to a halt.
There is simply no way to comply with such a quickly executed set of instructions for the bot.
But what would you expect to happen if an agent performs exactly the same action again while
already performing that action?

It should be noted that other things than cancelling a durative action that is in progress can
happen in other environments with other actions. Less sensible and less frequent possibilities
include queuing actions that are being sent by the agent and executing them in order or simply
ignoring new actions that are requested by an agent while another action is still ongoing.

An important alternative, however, which often makes sense is to perform actions in parallel.
Examples where this is the more reasonable approach abound. In StarCraft, for example, a
bot should be able to and can move and shoot at the same time. A robot should be able to and
usually can move, perceive and speak at the same time.

6.8 Deciding to Perform a Durative Action
Because durative actions may cancel each other, it is important that an agent continues to perform
the same action as long as it has not been completed yet. An agent would not make any progress
if it continuously instructs the entity that it controls to do different things. To prevent this from
happening an agent must have some focus on achieving one thing at a time. At the same time,
we also need to take into account that an agent may need to reconsider its choice of action if that
action is no longer feasible.

6.8.1 Creating Focus
In the Tower World there is an elegant solution for creating a focus on completing a particular
action based on the fact that the gripper can hold at most one block at a time. The idea is to focus
on a single block that the agent wants to hold, and if the agent holds it, to focus on the place
where to put it down. This will provide the agent with the focus that is needed. Any actions that
are unrelated to the block of the agent’s current focus then can simply be ignored.

There is a simple strategy for making an agent focus: Have the agent adopt a single goal that
indicates the current focus. If needed, goals can be reconsidered and dropped, which also addresses
our concern that sometimes the focus on an action needs to be reconsidered. In the Tower World
we can implement this strategy by adopting a goal to hold a block. Such a goal is a good candidate
for creating the right kind of focus in this environment. It is important in order to maintain focus,
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of course, that we ensure that an agent only adopts a single goal to hold a specific block and no
others. That is, we should have at most one goal of the form holding(X) in the agent’s goal
base at any time. We call such goals single instance goals. There is a simple rule template that
we can use for adopting a single instance goal sig to create focus:

if not(goal( sig )), reason_for_adopting( sig ) then adopt(sig) .

In the Tower World, there are two good reasons for adopting a goal to move a block (and thus
to hold it). The first is that a constructive move can be made by moving the block, and the second
is that the block is misplaced (and clear so we can move it). Here we use a slightly more general
notion of a misplaced block: A block is misplaced if that block obstructs access to another block
that can be put into position or no block can be put into position and at least one block needs to
be moved to the table. We use the following macro definition:

define misplaced(X) as a-goal( on(Y, Z) ), bel( above(X, Z); above(X, Y) ).

We thus obtain two rules by instantiating the rule template above where the first rule (making
a constructive move) should be preferred over the second.

if not(goal(holding(_)))), constructiveMove(X,Y) then adopt(holding(X)) .
if not(goal(holding(_)))), misplaced(X), bel(clear(X)) then adopt(holding(X)) .

An important decision remains to be made: In which module should we add these rules? Above
we observed that the event module should be used to not only process events but also should be
used to update an agent’s state. As the rules for adopting a goal above only update the agent’s
state, as a rule of thumb, we therefore should add them to the module used as event module. Note
also that even though an event module applies all rules (in order), at most one of the rules will be
applied because if the first rule adopts a goal, the query of the second rule no longer holds.

6.8.2 Deciding What to Do in the Tower World
In the remainder of this section, we complete the design of our agent that is able to robustly act
in the dynamic Tower World. Given that we may assume that we have implemented the single
instance pattern above and always will have at most a single goal of holding a block at any time,
the selection of actions to be performed in the environment turns out to be quite simple. The
more difficult part that we also still need to implement is the strategy for reconsidering the goal
to hold a specific block if unexpected events happen (i.e. a user moves blocks) which make such
a goal no longer beneficial.

If we can assume that the agent at most has one goal of holding a block and the agent only
has such a goal if it is feasible, the choice which action to perform is easy. If the agent has such a
goal and wants to hold a block, the agent should simply pick it up. Then, if the agent is holding
a block, it should, first, try to put it in position, but, otherwise, put it somewhere on the table.
Otherwise, the agent should move the gripper back to its initial position. This strategy can be
implemented by decision rules as follows:

use tower as knowledge.
use towergoal as goals.
use tower as actionspec.

define constructiveMove(X, Y) as
a-goal( tower([X,Y|T]) ), bel( tower([Y|T]), clear(Y), (clear(X) ; holding(X)) ).

module towerbuilder {
if a-goal( holding(X) ) then pickup(X).
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if bel( holding(X) ) then {
if constructiveMove(X,Y) then putdown(X, Y).
if true then putdown(X, table).

}

if true then nil.
}

The tower file used as knowledge is the Prolog file discussed above; towergoal specifies some
block configuration as goal as we have seen before; and, the tower file used as action specification
collects the three action specifications that we provided above for the Tower World.

The code introduces one new language feature: nested rules. Instead of an action a rule can
also have a rule section as head. Such rules are of the form

if csq {
...

}

where the dots . . . must be replaced by one or more rules.

6.8.3 Reconsidering Goals
The agent that we have developed so far is able to achieve its goal. It is not robust, however,
to actions of a user that interfere with the agent’s goals. The final part that we need to design
therefore is a strategy for reconsidering a goal to hold a block. This may be necessary when a
user moves one or more blocks and the current focus is no longer feasible or no longer desirable.
When is this the case? Assuming that we want to hold block X, i.e., holding(X) is present in
the agent’s goal base, when should we reconsider this goal? Two reasons for dropping the goal
are based on different cases where it is no longer feasible to pick up the block. The first case is
when the block is no longer clear. The second case is when another block is being held (because
the user put a block into the gripper). A third reason for dropping the goal is because the user
has been helping the agent and put the block into position. There would be no reason any more
for picking up the block in that case. These three reasons for dropping a goal are sufficient for
operating robustly in the dynamic Tower World. They would not always generate a best response
to changes in the environment, however. A fourth reason for reconsidering the goal is that the
target block cannot be put into position but there is another goal that can be put into position.
By changing the focus to such a goal the behaviour of the agent will be more goal-oriented. The
following rules implement this reconsideration strategy:

% check for reasons to drop or adopt a goal (goal management).
if goal( holding(X) ) then {

% first reason: cannot pick up block X because it’s not clear.
if not(bel( clear(X) )) then drop( holding(X) ) .
% second reason: cannot pick up block X because now holding other block!
if bel( holding(_) ) then drop( holding(X) ) .
% third reason: block X is already in position, don’t touch it.
if goal-a( tower([X|T]) ) then drop( holding(X) ) .
% fourth reason: we can do better by moving another block constructively.
listall L <- constructiveMove(Y,Z) do {

if bel(not(L=[]), not(member([X,_],L))) then drop( holding(X) ) .
}

}

Where should we put these rules for dropping a goal in the agent program? As we have seen
before, rules that manage the state of an agent are best placed in a module used as event module.
This also ensures that the agent will drop a goal if any of the reasons for doing so apply because
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an event module applies all applicable rules. It also ensures that the agent first updates its state
and only after doing so decides on an action to perform in the environment. Since the rules for
dropping a goal only affect the state of the agent, based on this design principle they should also
be put in the module used as event module. We should, moreover, place them before the rules for
adopting goals so that after dropping a goal the agent will adopt a new goal immediately.

This concludes the design of our agent for the dynamic Tower World.

6.9 Environments and Observability
The Blocks World and the Tower World variant of it are fully observable. This means that
the sensors or perceptual interface of the agent provide it with full access to the state of the
environment. Full observability is always relative to the representation of the environment. An
agent will receive all information there is about which blocks there are, where a block sits, and
whether the gripper is holding a block. In the Tower World, however, the agent does not have
access to the exact position of the gripper. It cannot determine by means of the percepts it
receives whether the gripper is hovering just above block b or not. As a consequence, it may
revise its goals to pick up block b just before grabbing it because another move can be made that
is constructive while block b cannot be moved constructively. In terms of efficiency, because such
aspects cannot be observed the action selection of the agent may not be optimal in a dynamic
environment such as the Tower World. Even though the agent does not have access to everything
there is to know about the world, it has full access to the aspects that it can observe: The agent
has full observability (relative to these aspects).

Usually, however, environments do not allow for a complete reconstruction of a representation of
their state via the percepts the agent receives from that environment. More often the agent has only
a partial view of its environment and can only maintain a reasonably adequate representation of a
local part of the environment. In such an environment an agent must typically explore to achieve
its goals. Many environments such as the Wumpus World we mentioned above where initially the
agent does not know where an item is located require an agent to explore its environment. Agents
in such environments only have incomplete information about the state of the environment and
need to take this into account when selecting actions to perform next. For example, the agent in
the Wumpus World cannot know for certain that the grid cell that the agent is facing is not a pit
if it stands on a breeze without additional information. The reasoning to decide on which action
to perform next is more complicated than in an environment that is fully observable.

The Wumpus World, however, is a rather special world again because there is only one agent
and the environment itself is static. By fully exploring the finite Wumpus World, which is possible
if all grid cells can be reached, the agent can construct a complete representation of its environment.
In dynamic environments, which most gaming environments, such as for example StarCraft are,
it is impossible to ever construct a complete and accurate representation of the environment. An
agent’s decision making gets even more involved then, as its decisions must be based on incomplete
information.

The fact that observability is relative to a representation is an important one in dynamic
environments as well. Even in a dynamic environment such as StarCraft, for example, certain
aspects of the environment are fully observable. An example in this environment is the position
of the agent.

6.10 Percept Types
The interface that we use for connecting to environments distinguishes four types of percepts [3, 4]:
percepts that are send once when the agent first connects to the environment, percepts that are
send always, and percepts that are send on change when a feature of the environment changes.
For each of these percept types we provide a templates for processing it.
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Send Once Percepts that are received only once when the agent is first connected to an envi-
ronment require an agent to make the information persistent because percepts are removed each
new cycle. If an agent needs to have access to the percept information that is sent only once,
it needs to store the information in its belief base. An example of a percept that is sent once
is a percept that provides information about the structure of a map that an entity is on. This
kind of information is provided, for example, by the Blocks World for Teams and StarCraft
environments. A template for processing a send once percept p(t⃗) is:

forall percept(p(t⃗)) do insert(p(t⃗)).

The template is straightforward. What is more important is to add the template to the right
type of module. Whenever an environment provides send once percepts, it is useful to create
a module that is used as init module and add it to the agent definition in the MAS file.
The percept rules for processing send once percepts should be added to this module that is only
executed once when the agent is launched. All other percept rules should be added to a module
used as event module.

Send Always We have already seen a template for processing send always percepts. A percept
that is received always when the environment feature is present requires an agent to both add
information to its belief base when it is available and remove it again when it is no longer available.
The template for a send always percept p(t⃗) therefore consists of a rule for adding and a rule for
removing a belief.

forall percept(p(t⃗)), not(bel(p(t⃗))) do insert(p(t⃗)).
forall bel(p(t⃗)), not(percept(p(t⃗))) do delete(p(t⃗)).

Send on Change A send on change percept is received each time when an environment feature
changes but not when the feature does not change. An example is a state percept that provides
information about the state of movement of an agent. A percept state(moving) is received
when the agent starts moving and a percept state(arrived) might be received when the agent
arrives at its destination. The template for this percept type records the change by removing the
old information and updating it with the new percept information.

forall bel(p(o⃗ld)), percept(p( ⃗new)) do delete(p(o⃗ld)) + insert(p( ⃗new)).

It is important to realize that the template assumes that a belief about p(o⃗ld) has been
inserted in the agent’s belief base. Use the init module for making sure some initial belief about
p(o⃗ld) has been inserted. Note that if no belief about p(o⃗ld) is present, the rule cannot be
applied.

6.11 Summary
As we saw in Chapter 5, if the agent has full control and actions are instantaneous, it is possible to
update an agent’s beliefs using knowledge about the effects of the actions that the agent performs.
If the agent’s initial beliefs represent the initial environment state, the agent’s beliefs will also
represent the correct environment states after performing actions. Agents hardly ever have full
control, actions are usually durative and may fail, and initializing the agent’s beliefs to reflect the
initial environment state is inflexible, however. It therefore is better to process percepts that an
agent receives from its environment.

Agents are connected to an environment in which they act. We have discussed the need to be
able to sense state changes by agents in all but a few environments. The only environments in

https://github.com/eishub/BW4T
https://github.com/eishub/Starcraft
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which an agent does not need a sensing capability is an environment in which the agent has full
control and actions do not fail. The Blocks World environment in which no other agents operate
is an example of such an environment. In this environment a single agent is able to maintain an
accurate representation of its environment by means of a correct specification of the effects of the
actions it can perform.

Perception is useful when an agent has incomplete knowledge about its environment or needs
to explore it to obtain sufficient information to complete a task. For example, a robot may
need to locate an item in a partially observable environment. Such a robot may not even know
how its environment is geographically structured and by exploring it would be able to map the
environment. But even in a simple environment such as the Wumpus World the agent does not
have a complete overview of the environment and needs to explore its environment to determine
what to do.

Summarizing, perception is useful when an agent acts in an environment in which:

1. the agent does not have full control, and events initiated by the environment may occur
(dynamic environments),

2. other agents also perform actions (another kind of dynamic environment),

3. the environment is not fully observable but e.g. needs to be explored, or

4. effects of actions are uncertain (stochastic environments), or actions may fail.

In such environments the agent is not able to maintain an accurate representation of its envi-
ronment without perceiving what has changed. For example, if stacking a block on top of another
block may fail, there is no other way to notice this than by receiving some signal from the envi-
ronment that indicates such failure. Throwing a dice is an example of an action with uncertain
outcomes where perception is necessary to know what outcome resulted. When other agents also
perform actions in an environment a sensing capability is also required to be able to keep track of
what may have changed.

Environments may also change because of natural events and may in this sense be viewed
as “active" rather than “passive". Again sensing is required to be able to observe state changes
due to such events. This case, however, can be regarded as a special case of (iii) other agents
acting by viewing the environment as a special kind of agent. The main purpose of sensing thus
is to maintain an accurate representation of the environment. Fully achieving this goal, however,
typically is not possible as environments may be only partially observable.

We emphasize how important it is for the design of an agent and a multi-agent system to
investigate and gain a proper understanding of the environment to which agents are connected.
As a rule of thumb, the design of a multi-agent system should always start with an analysis of the
environment in which the agents act. It is very important to first understand which aspects are
most important in an environment, which parts of an environment can be controlled by agents, and
which observations agents can make in an environment. Assuming that an environment interface
is present, moreover, two things are already provided that must be used to structure the design
of agents. First, a basic vocabulary for representing the environment is provided in terms of a
language used to represent and provide percepts to an agent. Second, an interface provides a list of
actions that are available to an agent, which, if they are documented well, also come with at least
an informal specification of their preconditions and effects. It is only natural to start analysing
this interface, the percepts and actions it provides, and to incorporate this information into the
design of an agent program. More concretely, as a rule it is best to start developing an agent by
writing percept rules and action specifications for the agent.

6.12 Notes
We have discussed to need to be able to perceive state changes, but we have not discussed the
perception of actions that are performed by agents. It is easier to obtain direct information about
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the environment state than about actions that are performed in it. In the latter case, the agent
would have to derive which changes result from the actions it has observed.

Recently programming with environments has become a topic in the multi-agent literature.
See e.g. [33]. Agent-environment interaction has been discussed in various other contexts. See
e.g. [2, 40].

6.13 Exercises
6.13.1

1. Will the stackBuilder agent of Section 6.3 be able to achieve its goal when it and the
tableAgent get control over the gripper in the Blocks World? Assume that the agents
are treated fair, and each of the agents can perform the same number of actions over
time. Alternatively, you may also make the assumption that the agents take turns.

2. Test in practice what happens when the agents are run using the Goal IDE. Select
different middleware platforms in the Run menu of the IDE to run the agents and
report what happens. Do the agents always perform the same number of actions?

3. Test the multi-agent Blocks World system again but now distribute the agents phys-
ically over different machines. Do the agents always perform the same number of
actions?

6.13.2
In dynamic environments such as the Tower World it is particularly important to test the
agent in all kinds of different scenarios that may occur. To test an agent for all the different
kinds of scenarios that may occur, a thorough analysis of what can happen in an environment
is needed. For the Tower World, explain why the towerBuilder agent we developed in
this chapter will act adequately in each of the scenarios below. Include references to code
lines in the agent program and explain why these lines are necessary and sufficient to handle
each scenario.

1. The agent has a goal holding(X) and

(a) the user puts a different block Y in the gripper. Consider both the scenario where
a constructive move can be made with block Y and the scenario where this is not
possible.

(b) the user puts a block on top of block X.
(c) the user changes the configuration such that it becomes infeasible to put block X

into position.
(d) the user puts block X into position.

2. The agent is holding block X and

(a) the user removes block X from the gripper. Consider both the scenario where
block X is put into position and the scenario where it is made infeasible to pick
up block X again.

(b) the user changes the configuration such that it becomes infeasible to put block X
into position.



Chapter 7

Modules

Modules are useful for structuring code. Modules are effective for handling specific situations or
cases in an environment. It is useful to combine related conceptual and domain knowledge, goals,
actions and rules that are relevant for handling a particular situation in a module. Modules can
also be used to hide some of the details of performing some action. If it is not important to know
how to build a tower, for example, these details can be put inside a module. Modules support
reusability.

Modules can be used as any other action in a rule. By applying a rule that calls a module
instead of that it performs an action, a module is entered and executed. Modules also offer options
for controlling the evaluation of rules, the execution of an agent, and for providing a focus on what
to achieve next.

7.1 Rule Evaluation Order
Program rules may generate multiple action options. In the example of Figure 7.1 the first
rule is applicable by instantiating X with b4 and Y with b3. It generates the option to do
move(b4,b3). There are two applicable instantiations of the second rule. It can generate two
options: move(b1,table) and move(b4,table).

use bwknowledge as knowledge.
use bwgoals as goals.
use bwmove as actionspec.

exit = nogoals.

define constructiveMove(X,Y) as a-goal(tower([X,Y| T])), bel(tower([Y|T])).
define misplaced(X) as a-goal(tower([X| T])).

module stackBuilder {
if constructiveMove(X,Y) then move(X, Y).
if misplaced(X) then move(X, table).

}

beliefs:
on(b1,b2). on(b2,b6). on(b3,table). on(b4,b5). on(b5,table). on(b6,b7). on(b7,table).
goals:
on(b1,b5), on(b2,table), on(b3,table), on(b4,b3), on(b5,b2), on(b6,b4), on(b7,table).

Figure 7.1: Module stackBuilder and Beliefs and Goals of a Cognitive State
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Which of these action options are actually performed by the agent depends on the rule evalu-
ation order that is used to execute a module. By default, rules that appear in the main module
are evaluated in the order they appear in a module from top to bottom. The first rule that is
applicable, i.e., generates an option, is applied. In our Blocks World example of Figure 7.1, the
first rule is applied and the constructive move(b4,b3) is selected. This is a linear order style
of rule evaluation. The rule evaluation order of the init and event modules is different. Instead of
just the first rule, all rules in modules used as event or init module that are applicable are applied
(see also Chapter 6). The rules are still evaluated from top to bottom but rule evaluation does
not stop when the first applicable rule has been found. We call this a linear all style of rule
evaluation.

The order of rule evaluation can be changed by specifying an order option for a module. Just
as the exit option, this option can be specified after the use clauses in a module. We can, for
example, add order=random in Figure 7.1 before the exit option to change to a random order
of rule evaluation. The effect of choosing this style of evaluation is that the agent will randomly
select one action out of the set of all options. In our example, the agent would randomly choose to
perform either move(b4,b3), move(b1,table), or move(b4,table). As a result, the agent
becomes non-deterministic and will execute differently each time it is run, e.g.:

Run 1:
stackBuilder performed move(b4, b3)
stackBuilder performed move(b1, table)
stackBuilder performed move(b2, table)
stackBuilder performed move(b6, table)
stackBuilder performed move(b5, b2)
stackBuilder performed move(b1, b5)
stackBuilder performed move(b6, b4)

Run 2:
stackBuilder performed move(b1, table)
stackBuilder performed move(b4, table)
stackBuilder performed move(b2, table)
stackBuilder performed move(b5, b2)
stackBuilder performed move(b6, table)
stackBuilder performed move(b1, b5)
stackBuilder performed move(b4, b3)
stackBuilder performed move(b6, b4)

Run 3:
stackBuilder performed move(b4, table)
stackBuilder performed move(b4, b3)
stackBuilder performed move(b1, table)
stackBuilder performed move(b2, table)
stackBuilder performed move(b6, table)
stackBuilder performed move(b6, b4)
stackBuilder performed move(b5, b2)
stackBuilder performed move(b1, b5)

Other options available are the linearall, linearrandom, linearallrandom and randomall
options.

The linearall order is used as default for modules used as event and init modules. But
it can also be used for other modules. Although this is usually a bad idea, in our Blocks World
example we can even use it as the evaluation order for our main module stackBuilder. The
agent will still be able to achieve its goal. If we would use this order in our example, the agent
would first apply the first rule and perform move(b4,b3). It would then evaluate the second rule
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and perform move(b1,table). Note that it would not perform the action move(b4,table)
as the first rule just constructively moved block 4 and it is no longer misplaced. But even if both
actions could have been executed, only one would have been performed, as an if-then-rule is
always applied for only one instantiation.

As with any linear rule evaluation order, the linearrandom order would evaluate rules in
the order that they appear in a module from top to bottom. This style of evaluation will only
apply the first applicable rule. But if that rule generates multiple options, one of the options
will be chosen randomly. In our example, if block 2 would sit on top of block 3, only the second
rule would be applicable and generate the options move(b1,table), move(b4,table), and
move(b6,table). One of these would then be randomly chosen with the linearrandom order
of evaluation. The same concept applies for the linearallrandom order.

Finally, the randomall order will apply all applicable rules as the linearall order does.
This style of evaluation will evaluate the rules in random order though and if a rule generates
multiple options select one at random as well. In our example, one possible order would be to first
evaluate the second rule and perform move(b4,table) and then continue with evaluating the
first rule and perform move(b4,b3).

Note that as the rule order evaluation of a module by default is linear (except for modules
used as init or event module), there is no need to use the order=linear option.
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Figure 7.2: Average Performance of a Blocks World Agent that Uses Random Order

To conclude our discussion of the example Blocks World agent, we briefly look at the overall
performance of an agent that uses random rule evaluation order. In Figure 7.2 the RSG line shows
the average performance, i.e., number of move actions performed, of such an agent for different
numbers of blocks in a Blocks World problem. This performance is compared to the performance
of the simple unstacking strategy that that first moves all blocks to the table and then re-stacks
the blocks to achieve the goal state. The performance of the unstacking strategy is indicated by
the US line. Observe that this simple strategy never requires more than 2N moves where N is
the number of blocks. The agent that uses random rule evaluation order performs slightly better
because it may perform constructive moves whenever this is possible and will at least some of the
time do so instead of waiting to make constructve moves only after all blocks have been moved to
the table.

7.2 Using Modules
We have seen how to use modules using use clauses. A use clause in an agent definition facilitates
using a module as main module in Chapter 5 or as event or init module in Chapter 6. But a
module can also be used as any other action in a rule. We will illustrate this by replacing the rule
for handling misplaced blocks in our Blocks World example with a rule that calls a module instead
that unstacks all blocks. We can re-use the module here that we used for the tableAgent in
Section 6.3.
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use bwknowledge as knowledge.
use bwmove as actionspec.

exit = noaction.

module clearBlocks {
if bel(on(X, Y), block(Y)) then move(X, table).

}

We can now use this module in our stackBuilder module:

use bwknowledge as knowledge.
use bwgoals as goals.
use bwmove as actionspec.
use clearBlocks as module.

exit = nogoals.

define constructiveMove(X,Y) as a-goal(tower([X,Y| T])), bel(tower([Y|T])).
define misplaced(X) as a-goal(tower([X| T])).

module stackBuilder {
if constructiveMove(X,Y) then move(X, Y).
if misplaced(X) then clearBlocks.

}

The move action in the second rule of our previous stackBuilder module has been replaced
with the clearBlocks module. This illustrates that a module can be used as any other action
in a rule. In fact, it is not even possible to tell from the rule whether an action is selected or a
module because the syntax is the same. You need to inspect the use clauses of the module to see
that clearBlocks is a module. A plain use clause use clearBlocks is needed to indicate
that the clearBlocks module is used in the module.

7.2.1 Entering a Module
A module is entered, executed, and exited. If a module is entered, it becomes the active module.
There is at most one module that is active at any time. When a module is activated the rules
in the module are the only rules used to generate action options. The module is executed by
evaluating and applying the rules of the module using the rule evaluation order of the module. If
a module does not set its rule evaluation order, the default linear order is used. Note that this
also is true for modules called from a module used as event module.

A module that is called from a rule (instead of used in an agent definition to specify top-level
modules), is entered if the rule is evaluated and applicable. A module does not have any pre-
conditions and will always be entered when the condition of the rule holds. In our example if the
second rule is evaluated and the condition misplaced(X) holds, the module clearBlocks will
be entered. Of course, if a module is part of a combo-action, then the order of actions is respected,
and the module is executed in the order that the actions appear in the combo-action. As modules
can be called from within other modules hierarchies of modules can be used. Modules can be used
recursively as well.

7.2.2 Controlling When to Exit a Module
You may have noticed that we changed the exit condition of the clearBlocks module. The
default exit condition of a module is always. This means that a module is executed once and
then control is handed back to the module that called it. This happens, for example, with a module
that is used as event module. That module is (automatically) called from the main module (or
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other active module called from that module) as part of the agent’s cycle (see Figure 6.5). After
executing the module, control is handed back to the main module. The only exception is the exit
condition of a module that is used as main module. The main module’s exit condition is set to
never by default. The main module is not terminated after being executed once but remains
in control over the action selection process as a top-level module that coordinates all decision-
making of the agent. This option is used to guarantee that an agent keeps executing and does
not terminate. Note that the agent cycle of Figure 6.5 is still executed, as the check whether to
execute the event module is performed after each execution of the main or other active module
in line with this cycle. Even if the exit condition of a module (including the main module) is set
to never it is still possible to exit a module using the exit-module action (see below). For all
modules other than the main module, it is not useful to set the exit condition to never without
also using the exit-module action because otherwise that module would never hand control
back to the module that called it.

The condition for exiting a module can be changed for any module using the exit option.
Apart from the default exit option for modules always and the never option, there are two
other options. One is the nogoals option that we have seen before. A module with a nogoals
option is terminated when the agent has no goals to pursue any more in the module; this normally
means that the goal base of the agent is empty. The other option is the noaction option used in
our clearBlocks module above. The termination behaviour of a module that uses this option
is changed to only end the module when none of the rules of the module generate any options, i.e.
when the module does not select any actions to perform any more.

Finally, the internal action exit-module can be used to terminate a module at any time (no
matter what exit condition has been specified for the module). This action can be used in a rule as
any other action. It is important to realize, however, that when this action is executed, the module
is terminated and any actions that would follow the exit-module action in the combo-action of
a rule will not be executed.

7.3 Creating Focus
We have looked so far at agents that have a single goal they want to achieve. But agents can
have multiple goals at the same time. One problem that agents they may need to handle is that
these goals can conflict. An agent has conflicting goals if they cannot be achieved simultaneously.
That an agent has conflicting goals, however, does not mean that they cannot be achieved one
after the other. An agent that wants to go to a location here and a location there cannot be at
both locations at the same time but can visit them sequentially. An agent just needs a method for
handling conflicting goals. We use the Blocks World to illustrate conflicting goals and introduce
the focus option of a module as a method for handling the conflict.

Suppose we have a variant of a Blocks World problem where our agent wants to build two
different towers using the same six blocks. We use the original stackBuilder module again
with two rules where the first makes a constructive move, if possible, and the second moves a
misplaced block to the table (see Section 7.1). The agent has the following two goals (you need
to change the bwgoals.pl file accordingly):

on(b1,table), on(b2,b1), on(b3,b2), on(b4,b5), on(b5,b6), on(b6,b3).
on(b1,b4), on(b2,b1), on(b3,b2), on(b4,b5), on(b5,b6), on(b6,table).

Also suppose that the agent starts in the initial Blocks World configuration of Figure 7.3 (in
the BlocksWorld MAS file use the start=[0,1,2,5,6,0] option). If you run the MAS, you
will find that the agent will never achieve either of its goals. The only moves it can make initially
is to move either block 4 or 3 to the table (because both are misplaced given one of the goals).
Thereafter the agent can make a constructive move again which moves the block moved to the
table back in its original position (because the block can be used to constructively make progress
with one of the two goals). The agent will repeat this forever.
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module := useclause+ option∗ macro∗ module id(parameters) { rule+ }
useclause := use id [as usecase] .
usecase := knowledge | beliefs | goals | actionspec | module
option := exit= exitoption . | focus= focusoption . | order= orderoption .
exitoption := always | never | nogoals | noaction
focusoption := none | new | select | filter
orderoption := linear | linearall | linearrandom | linearallrandom | random | randomall
macro := define id[(parameters)] as msc .
rule := if csq then (actioncombo | { rule+ }) . |

forall csq do (actioncombo | { rule+ }) . |
listall var <- csq do (actioncombo | { rule+ }) .

csq := stateliteral (, stateliteral)∗

stateliteral := statecond | not(statecond) | true | id(parameters)
statecond := [selector.]stateop(qry)
stateop := bel | goal | a-goal | goal-a | percept | sent
sent := sent | sent: | sent? | sent!
actioncombo := action (+ action)∗

action := id(parameters) | selectoraction | generalaction
selectoraction := [selector.](insert(upd) | delete(upd) | adopt(qry) | drop(qry) | send)
send := send(qry) | send:(qry) | send?(qry) | send!(qry)
generalaction := exit-module | log(term) | print(term) | sleep(term) |

starttimer(term,term,term) | canceltimer(term) |
subscribe(term) | unsubscribe(term)

selector := (parameters) | all | allother | some | someother | self | this
qry := a valid KR query
upd := a valid KR update
parameters := term (, term)∗

term := a valid KR term

Table 7.1: Module Grammar

Focus of Attention It is clear that the agent has conflicting goals that cannot be achieved
simultaneously. To achieve its goals, the agent has to select a goal to focus on in order to achieve
at least one of its goals. A module can be used to create a focus of attention on a specific goal
of an agent using the focus option. This option allows an agent to select a goal from its goal
base and to put it into a new so-called attention set that is associated with the module. An
attention set is a new goal base that represents the current focus of an agent.

use bwknowledge as knowledge.
use bwgoals as goals.
use buildTower.

module stackBuilder {
if a-goal(tower([X|T])) then buildTower.

}

In order to use this focus mechanism, we modified the stackBuilder module and replaced
the rules for choosing a move action with a single rule that calls a new module called buildTower.
As before, a use clause indicates that the module uses the buildTower module. As the choice
of move action is delegated to this new module, there is no need any more for a use clause for an
action specification of the move action. The agent that uses this version of the stackBuilder
module as main module is able to handle multiple, conflicting goals in the Blocks World that our
earlier Blocks World agent is not able to deal with. This is so because the buildTower creates
a focus on a single goal of the agent.
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Figure 7.3: Initial Blocks World state

The code for the module buildTower is provided in Figure 7.4. The idea is that this module
builds a single tower (or desired Blocks World configuration). The macros defined and the rules of
the module and its exit condition are the same as those we used previously for the stackBuilder
module. The use clauses for knowledge and the action specification are also copied. The main
difference is the use of the focus=select option in the buildTower module. This option
ensures that a focus is created on a single goal of the agent. As the agent has two goals to create
two different towers (see above), this means that the module will focus on building only one of
those towers at the same time.

use bwknowledge as knowledge.
use bwmove as actionspec.

exit = nogoals.
focus = select.

define constructiveMove(X,Y) as a-goal(tower([X,Y|T])), bel(tower([Y|T])).
define misplaced(X) as a-goal(tower([Y|T])).

module buildTower {
if constructiveMove(X,Y) then move(X,Y).
if misplaced(X) then move(X,table).

}

Figure 7.4: Module buildTower using a focus option

Adding a focus option other to none to a module changes the way a module is executed. Each
of the options new, select, and filter creates a new attention set, i.e. a new goal base that
is associated with the module. This attention set (or goal base) is used for evaluating cognitive
state queries instead of the attention set that is associated with the caller module. The main goal
base of the agent is associated with the module used as main module. The difference between the
options is how the content of the attention set is set. The new option simply creates an empty
attention set. It is up to the module to adopt goals to create some content for the attention set.
The select and filter options add a single goal from the current attention set to the new
attention set each by means of a slightly different mechanism.

In our example, the buildTower module uses the select option. This option selects one of
the goals in the current attention set that satisfy the condition of the rule that calls the module.
The condition of the rule in our example is a-goal(tower([X|T])). The agent has two goals
in its current attention set associated with the main module stackBuilder:

main:
on(b1,table), on(b2,b1), on(b3,b2), on(b4,b5), on(b5,b6), on(b6,b3).
on(b1,b4), on(b2,b1), on(b3,b2), on(b4,b5), on(b5,b6), on(b6,table).
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buildTower:
on(b1,b4), on(b2,b1), on(b3,b2), on(b4,b5), on(b5,b6), on(b6,table).

The goal-condition, i.e. goal(tower([X|T])), of the rule’s cognitive state query is eval-
uated using both goals as usual in combination with the agent’s knowledge. A random choice is
made to select one of the goals for which the condition holds. In our example, both goals satisfy
the cognitive state query goal(tower([X|T])) and either one could be selected. The goal that
is selected is added to a new attention set associated with the buildTower module, for example,
the second goal as suggested above. This attention set becomes the new active attention set and
will be used for evaluating the cognitive state queries of rules in the module. The idea is that the
goal(s) in the active attention set are the goals that the agent currently actively pursues. Because
the agent in our example will only have one goal it focuses on, the rules we used for building a
Blocks World configuration are as effective again as they were before.

Focus with the filter option The focus option filter does not select one of the current
goals of the agent but instead adds an instantiation of the rule’s cognitive state query to the newly
created attention set. The goal that is added is obtained as follows: first all goal-queries that
occur positively in the rule’s cognitive state query are collected. All instantiations for which the
rule’s condition holds are applied to these queries. This yields in our case a list of instantiated
queries goal(tower([b1])), goal(tower([b2,b1])), etcetera. One of these instantiated
queries is selected and the queries inside the goal-operators are collected and each of these queries
is added separately to the new attention set. In our example, the following attention set could be
associated with the buildTower module:

main:
on(b1,table), on(b2,b1), on(b3,b2), on(b4,b5), on(b5,b6), on(b6,b3).
on(b1,b4), on(b2,b1), on(b3,b2), on(b4,b5), on(b5,b6), on(b6,table).

buildTower:
tower([b6,b3,b2,b1]).

Lifecycle of an Attention Set A module such as the buildTower creates a new attention
set when it is entered. When this module is exited, the attention set is removed and the previously
active attention set becomes the active attention set again. Any goals that have been added to
the attention set by the module are thus automatically removed.

The this and self selectors Goals that are adopted by adopt actions are added to the
currently active attention set. A selector can be used to change this. The selector this is the
default selector and this.adopt and adopt have the same effect. Prefixing the selector self
to the adopt action has a different effect. The action self.adopt(qry) adds the goal qry to
the top-level goal base associated with the main module of the agent. A similar remark applies
to goal-queries. A goal-query is evaluated on the active attention set, but a query of the form
self.goal(qry) is evaluated on the top-level attention set. Note that there is no difference
between the queries bel(qry)), this.bel(qry)) and self.bel(qry)) as there is only one
(global) belief base. Adding the this or self selector s to a drop(qry) action also do not
change its effects: a goal in any of the attention sets of the agent that implies qry is removed
from that attention set.

7.4 Notes
The original proposal to introduce modules into Goal can be found in [22].
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The execution mode of Goal where action options are randomly chosen when multiple options
are available is similar to the random simulation mode of Promela [7]. The Tropism System Cog-
nitive Architecture designed for robot control also uses a random generator in its action selection
mechanism [5]. As in Goal, this architecture based on so-called tropisms (“likes" and “dislikes")
may generate multiple actions for execution from which one has to be chosen. The selection of one
action from the chosen set is done by the use of a biased roulette wheel. Each potential action is
allocated a space (slot) on the wheel, proportional to the associated tropism value. Consequently,
a random selection is made on the roulette wheel, determining the robot’s action.



Chapter 8

Communicating Agents

In a multi-agent system, it is useful for agents to communicate about their beliefs and goals. Agents
may have only a partial view of the environment, and by communicating, agents may inform each
other about parts they but other agents cannot perceive. Agents may also use communication to
share goals and coordinate the achievement of these goals. Communication is essential in situations
where agents have different roles and need to delegate actions to appropriate agents, or when agents
with conflicting goals operate in the same environment space and need to coordinate their actions
to prevent deadlocks or other less serious but inefficient interactions with other agents.

This chapter will explain how agents can communicate with each other. An example of a multi-
agent system is introduced in Section 8.1 for illustrating the use of communication to coordinate
the actions of multiple agents. Programming constructs for communication will be introduced and
we will explain how agents can process messages in Section 8.2. Processing messages is similar
to percept processing. The different types of messages that agents can send are introduced in
Section 8.3. Section 8.4 discusses how agents can be selected that should receive a message.
Finally, Section 8.6 discusses the example introduced in Section 8.1 in more detail.

8.1 Example: The Coffee Factory Multi-Agent System
Throughout this chapter we will illustrate various concepts of multi-agent systems and communi-
cation by means of an example. The example multi-agent system that we will use concerns a set
of agents that make coffee. We call this multi-agent system the Coffee Factory MAS.

define maker as agent {
use makerInit as init.
use coffeeEvents as event.
use machine as main.

}

define grinder as agent {
use grinderInit as init.
use coffeeEvents as event.
use machine as main.

}

launchpolicy {
launch maker.
launch grinder.

}

Figure 8.1: The Coffee Factory MAS (coffee.mas2g)

83
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The Coffee Factory MAS is a multi-agent system in which a coffee maker and a coffee grinder
work together to brew a fresh cup of coffee. The MAS does not use an external environment. To
focus on the communication, we just program agents that together make a coffee virtually. We
can extend the two-agent MAS with additional agents, e.g., we could add an agent that represents
a cow that can provide milk for making a latte. To make coffee, the coffee maker needs water
and coffee grounds. It has water, and coffee beans, but not ground coffee. Grinding the beans is
the task of the coffee grinder. The coffee grinder needs beans, and produces grounds. The coffee
maker and the coffee grinder use the same main and event modules (and thus the same knowledge
and action specifications as well); only how they are initialized differs.

The knowledge in Figure 8.2 reflects the agents’ knowledge of which ingredients are necessary
for which products and what it can make. The agents are designed in such a way that they know
which ingredients are required for which products. They know what they can make themselves,
but they do not initially know what other agents can make. This is where communication comes
in. The maker agent can make coffee and espresso. The grinder agent can make grounds.

:-dynamic have/1, % indicates that we have a product ready for use.
canProduce/1, % indicates products that we can make ourselves.
canProduce/2, % indicates that another machine can make a certain product.
delivered/2. % indicates that a product has been delivered to a certain machine.

% Common knowledge of ingredients that are needed for making a product.
requiredFor(coffee, water).
requiredFor(coffee, grounds).
requiredFor(espresso, coffee).
requiredFor(grounds, beans).

% A machine can make a product if it has the product or it can make all ingredients.
canMake(Product) :- have(Product).
canMake(Product) :- canProduce(Product),
forall(requiredFor(Product, Ingredient), canMake(Ingredient)).

% A short hand for having delivered a product to any machine.
delivered(Product) :- delivered(_,Product).

Figure 8.2: Knowledge in the Coffee Factory (coffee.pl)

Two simplifying assumptions have been made in the design of the Coffee Factory MAS. First,
resources (like water, beans, grounds and coffee) cannot be depleted. Second, the agents
share the resources in the sense that if one agent has a resource, all agents do. But there is no envi-
ronment, so agents cannot perceive changes in available resources; they have to communicate this.
For example, if the coffee grinder makes grounds, it will thereafter believe have(grounds),
but the coffee maker will not have this belief until it gets informed about it.

use coffee as knowledge.

module makerInit {
if true

then insert(have(water), have(beans), canProduce(coffee), canProduce(espresso)).
if true then adopt(have(coffee)).

}

Figure 8.3: Module for initializing the Coffee Maker (makerInit.mod2g)

The modules of Figures 8.3 and 8.4 are used as init module and provide the agents with their
initial goals. For example, the maker agent wants to have coffee. Note that this describes a
goal state (coffee being available), not an action (e.g., ‘making coffee’).
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use coffee as knowledge.

module grinderInit {
if true then insert(canProduce(grounds)).
if true then adopt(delivered(grounds)).

}

Figure 8.4: Module for initializing the Coffee Grinder (grinderInit.mod2g)

There is one action of making a product available to the agents. The make action is specified
as an internal action (we do not use an environment).

use coffee as knowledge.

% If the Product can be made by us, we will have done so after this action
define make(Product) as internal with

pre{ canMake(Product) }
post{ have(Product) }

Figure 8.5: Action available in the Coffee Factory MAS (coffee.act2g)

8.2 Communication: Send Action and Mailbox
Agents use a mailbox or message base in which they receive messages sent by other agents. The
mailbox can be inspected by using the cognitive state operator (Agent).sent(Msg). Here
Agent is the agent that sent the message and Msg is the content of the message (expressed in
the knowledge representation language used). Figure 8.6 shows how this operator is used in the
coffeeEvents module for processing messages that the agents exchange. Message processing is
best done in a module used as event module.

The action (AgentName).send(Poslitconj) is an internal action provided by the pro-
gramming language for sending Poslitconj to the agent with name AgentName. Poslitconj
is a conjunction of positive literals, i.e. facts. AgentName should be the the name of the agent
as specified in the MAS file. The message is sent to the target agent, and after arrival the mes-
sage is placed in the target agent’s mailbox. Depending on the middleware and distance between
the agents, there may be delays in the arrival of the message. Throughout we will assume that
messages always are received by their addressees.

8.2.1 The send action
To illustrate the send action, let’s first consider a simple example multi-agent system consisting
of two agents, fridge and groceryplanner. Agent fridge is aware of its contents and will
notify the groceryplanner whenever some product is about to run out. The groceryplanner
will periodically compile a shopping list. At some point, the fridge may have run out of milk, and
takes appropriate action:

if bel(amountLeft(milk, 0)) then (groceryplanner).send(amountLeft(milk, 0)).

At the beginning of its next action cycle, the groceryplanner agent will receive this message.
The received messages can be inspected by means of the sent operator. The groceryplanner
can thus act on the received message:
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use coffee as knowledge.

module coffeeEvents {
% answer information requests.
forall (Machine).sent?(canProduce(_)), bel(canProduce(Product) ; have(Product))
do (Machine).send:(canProduce(Product)).

% process information from other agents.
forall (Machine).sent:(canProduce(Product)) do insert(canProduce(Machine,Product)).

% process delivery requests.
forall (Machine).sent!(have(Product)) do adopt(delivered(Machine,Product)).

% process actual deliveries.
forall (Machine).sent(have(Product)) do insert(have(Product)).

% we have a request for a product but we don’t have it yet.
if goal(delivered(Machine, Product)) then adopt(have(Product)).

% we can produce it but need an ingredient.
if goal(have(Product)), bel(canProduce(Product), requiredFor(Product,Ingredient))
then adopt(have(Ingredient)).

}

Figure 8.6: Event Processing in the Coffee Factory (coffeeEvents.mod2g)

if (fridge).sent(amountLeft(milk, 0))) then adopt(buy(milk)).

Note that the fridge will keep sending this message to the groceryplanner over and over again
until it believes it will have some milk again. Some record-keeping would be required in either
agent to prevent this.

8.2.2 Variables
Variables can be used to instantiate messages in rules. For example, a more generic version of the
fridge’s program rule would be

if bel(amountLeft(P, N), N < 2)
then (groceryplanner).send(amountLeft(P, N)).

Note that we used an if-then-rule here that will only send one message for one of the values of
N for which we have N<2. By using a forall-do-rule messages for all products that are needed
would be sent to the groceryplanner.

We can also use variables for the recipients and senders of messages in the cognitive state
queries of a rule. For example:

% This isn’t an argument; it’s just contradiction!
% - No it isn’t.
forall (X).sent(yes) do (X).send(no).

% http://en.wikipedia.org/wiki/Marco_Polo_(game)
forall (X).sent(marco) do (X).send(polo).

This is especially useful if you don’t know upfront who will have sent a message.
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use coffee as knowledge.
use coffee as actionspec.
exit=nogoals.

module machine {
% if another machine needs a product and we have it, then deliver that product.
if goal(delivered(Machine, Product)), bel(have(Product))
then (Machine).send(have(Product)) + insert(delivered(Machine, Product)).

% if we want to have a product and we can make it ourselves, then do so.
if goal(have(Product)), bel(canMake(Product)) then make(Product).

% if we can’t produce something ourselves we need to order it.
% if we know who can, tell that machine to make it for us.
if goal have(Product)), bel(canProduce(Machine,Product))
then (Machine).send!(have(Product)).
% if we don’t know that, ask everyone else what they can make for us.
if goal(have(Product)), not(bel(canProduce(_,Product)))
then allother.send?(canProduce(_)).

}

Figure 8.7: Module for decision making in the Coffee Factory MAS (machine.mod2g)

Closed Actions Like any other action that is selected for execution, a send action also must
be closed, i.e. all variables in a send action must be bound after evaluation of the cognitive state
query of a rule. This means that messages sent must be closed.

8.3 Moods of Messages
Up until now all examples have shown communication of an agent’s beliefs. Every message was
a statement about the sender’s beliefs regarding the content. It would also be useful to be able
to communicate about an agent’s goals. In natural language, the mood of sentence is used to
make clear that a message is about a goal instead of a belief. The mood of a sentence in a
natural language can be indicative (‘The time is 2 o’clock’), expressive (‘Hurray!!’), declarative
(‘I hereby declare the meeting adjourned’), or interrogative (’When does the train leave?’). The
Goal programming language also supports moods by adding a mood operator at the end of the
send operator. Three moods listed in Figure 8.8 are available.

Mood op. example NL meaning
INDICATIVE : send:(amountLeft(milk, 0)) “I’ve run out of milk.”
DECLARATIVE ! send!(status(door, closed)) “I want the door to be closed!”
INTERROGATIVE ? send?(amountLeft(milk, _)) “How much milk is left?”

Figure 8.8: Operators for Moods of Messages

Although there is an operator for the indicative mood, this mood operator is optional as it
is the default operator. In other words, in the absence of a mood operator, the indicative mood
is assumed. That means that all examples in Section 8.2 were implicitly using the indicative
mood. The declarative mood can be used, for exampe, if the coffee maker or coffee grinder needs
a resource to make something but does not have it. The agent then can send a message by using
the declarative mood operator send! to all other agents using the allother operator to indicate
that it needs the resource:

% we can’t produce it and need to order it.
if goal(have(Product)), not(bel(canProduce(Product)))
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then allother.send!(have(Product)).

The mood operators can also be used in combination with the query operator sent to inspect
the mailbox of an agent and check whether messages with a particular mood have been received.
For example, to handle a message like the one above from the coffee maker, the coffee grinder can
use the rule:

% if some agent needs something we can make, adopt the goal to make it
forall (Machine).sent!(have(Product)) do adopt(delivered(Machine,Product)).

This rule will make an agent adopt a goal to produce a product that another agent needs. Another
rule in the machine module will then make sure that the agent that needs the product is notified
when it is available.

We previously discussed that send ations (and thus messages) must be closed as any other
action that is executed must be. But there is one exception: Interrogative messages do not need
to be closed. These messages are similar to open questions, for example, “What time is it?” or
“What is Ben’s age?”. Such questions cannot be represented by a closed sentence. Instead, a don’t
care can be used to indicate the unknown component. For example:

if not(bel(timeNow(_))) then (clock).send?(timeNow(_)).

if not(bel(age(ben,_))) then (ben).send?(age(ben,_)).

8.4 Agent Selectors
In many multi-agent systems agents may find themselves communicating with agents whose name
they do not know beforehand. For example, the MAS may have been created by launching 100
agents using the number constraint (see Chapter 6, Figure 6.1). If some of these agents need to
communicate with each other, the agent that needs to be addressed needs to be selected somehow.
In a multi-agent system it may also be useful to multicast or broadcast a message to multiple
receivers. For these cases a flexible way of addressing the receivers of messages is needed.

8.4.1 send action syntax
The send action allows more dynamic addressing schemes than just the agent name by using an
agent selector. The available options for using agent selectors are listed in the module grammar
of Table 7.1 and are illustrated next with some examples:

% agent name
(agent2).send(theFact).

% variable (Prolog)
(Agt).send(theFact).

% message to the agent itself
self.send(theFact).

% multiple recipients
(agent1, agent2, Agt).send(theFact).

% using quantor
% if we don’t know anyone who can make our required resource, broadcast our need
if goal(have(Product)), not(bel(canProduce(Product)))
then allother.send!(have(Product)).
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One observation with respect to the broadcasting of a message using the allother operator is
important to avoid flooding the mailboxes of other agents. Note that we have used an if-then-
rule for rule in the last example above for sending a message to all other agents. If we would
have used a forall-do-rule here, for each instantiation of the variables a message would have
been sent. Because there may be multiple ingredients required for a product Product (e.g., for
coffee, see Figure 8.2), the agent would send the same message for each required ingredient it
is missing, which is inefficient.

Agent Name The agent name is the simplest type of agent expression, which we have already
seen in Sections 8.2 and 8.3. It consists of the name of the receiving agent. If the KR language of
the agent is Prolog, the agent name must start with a lowercase letter. Example:

(alice).send:(hello).

% addressing multiple agents with a single send action
(alice,bob,charlie).send:(hello).

Note that when a message is sent to an agent, the agent name used must refer to an agent
that is part of the MAS. If the agent name does not refer to an agent that is part of the MAS, or
has died, or is otherwise unadressable, a warning will be printed in the agent’s log. An agent that
successfully sends a message does not receive any feedback that confirms or disconfirms that the
message has been received.

Variables A variable type agent expression allows a dynamic way of specifying the message
recipient. Sometimes the recipient depends on the agent’s beliefs or goals or on previous conver-
sations. The variable agent expression consists of a variable in the agent’s KR language. If the
KR language is Prolog, this means it must start with an uppercase letter. This variable will be
resolved when the program rule’s cognitive state query is evaluated. This means that a cognitive
state query must bind all variables that are used in the agent selector. Like any action, if an agent
selector contains unbound variables at the time that the agent decides to perform the action, the
action will result in a failure and the agent will be terminated. To illustrate in an example, we
assume an agent that believes there are two agents agent(john) and agent(mary) and has a
goal informed(john, fact(f)):

if bel(agent(X)), goal(hold(gold)) then (X).send!(hold(gold)).

if goal(informed(Agent, fact(F))) then (Agent).send:(fact(F)).

% if applied, next rule terminates the agent as variable Agent is not instantiated
if bel(something) then (Agent).send:(something).

In this example, the first program rule contains the variable X, which has two possible sub-
stitutions: [X/john] and [X/mary]. This results in there being two options for the action:
(john).send!(hold(gold)) and (mary).send!(hold(gold)). The agent will select one
of these options for execution.

Quantors Quantors are a special type of agent expression. They consist of a reserved keyword.
There are five possible quantors that can be used in combination with the send action. When
the send action is performed, the quantor is expanded to a set of agent names, in the following
way:

• all will expand to all names of agents currently present in the MAS (including the name
of the sending agent itself).

• allother will expand to all names of agents currently present in the MAS, with the ex-
ception of the sending agent’s name.
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• some will expand to the name of a randomly selected agent currently present in the MAS
(including the name of the sending agent itself).

• someother will expand to the name of a randomly selected agent currently present in the
MAS, with the exception of the sending agent’s name.

• self will resolve to the sending agent’s name.

8.5 Channel Selectors
Instead of messaging specific agents directly (either by their name or using quantors), it is also
possible to message based on topic, i.e., using a publish–subscribe pattern.

The action:

subscribe(term)

can be used to subscribe an agent to a channel named term. This name can be an arbitrary
literal, as long as it does not overlap with the name of an agent. The first agent to call this action
will ‘create’ the channel.

Conversely, the action:

unsubscribe(term)

can be used to unsubscribe the agent from the channel named term. If a channel has no more
subscribers, it will be removed.

The names of existing channels can be used instead of agent identifiers or quantors to address
all subscribers (without knowing who they are):

if bel(somebelief) then (somechannel).send(somemessage).

where ‘somechannel‘ is the literal channel name some other agent(s) must have subscribed to
when calling this action. The sending agent does not need to subscribed to the channel itself.
When executing this send action, any subscribed agent will be able to receive the message as
usual:

if (Agent).sent(somemessage) then someaction.

where ‘Agent’ will be bound to the agent that has sent the message (i.e., not the channel name).

8.6 The Coffee Factory MAS Again
In Section 8.1 the Coffee Factory MAS was introduced. In this section the workings of the coffee
maker and coffee grinder are analyzed in more detail. We will see how the agents coordinate their
actions by communicating in different ways.

Capability exploration The agents know what they can make themselves by using the basic
beliefs that were inserted in their init modules (see Figures 8.3 and 8.4). To find out what the
other agents can make, the following rules are used in the program (both in the main and the
event module):
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% if we don’t know that, ask everyone else what they can make for us.
if goal(have(Product)), not(bel(canProduce(_,Product)))
then allother.send?(canProduce(_)).

% answer information requests.
forall (Machine).sent?(canProduce(_)), bel(canProduce(Product) ; have(Product))
do (Machine).send:(canProduce(Product)).

% process information from other agents.
forall (Machine).sent:(canProduce(Product)) do insert(canProduce(Machine,Product)).

The first rule checks if the agent already knows a machine that can make a certain product
it needs. If this is not the case, the rule is applied and an interrogative message to ask which
products all other agents can make is sent. Note that using all instead of allother would
result in this agent asking itself what it can make.

The second rule handles such incoming interrogatives. It looks in the mailbox for received
interrogative messages asking what this agent can make. It replies to the sender with one or more
indicative messages, indicating what it can make (and what it already has). Note that as messages
are deleted each cycle (just like percepts), each such interrogative message will be replied to only
once. However, also note that as agents run asynchronously, this may result in one agent asking
the other agents for a response multiple times, as the other agents might not have sent their reply
yet, thus also resulting in multiple responses. Additional bookkeeping (i.e. of what was already
sent or received) would be needed to prevent this.

Finally the indicatives are handled in the third rule. The mailbox is queried for received
indicative messages, containing the information about what the other agents make. If such a
message exists, this information is inserted as a fact in the belief base. Note that the information
about the sender (i.e. the machine) and the product it can make are combined in the belief base.

Production delegation The coffee maker needs ground beans (grounds) to make coffee, but
it cannot grind beans. But once it has found out that the coffee grinder can grind beans into
coffee grounds, using the rules above, it can request the grinder to make grounds by sending it
an imperative message. This is represented more generically in the following action rule (from the
main module):

% if we know who can, tell that machine to make it for us.
if goal have(Product)), bel(canProduce(Machine,Product))
then (Machine).send!(have(Product)).

When this agent has a goal for a product which it doesn’t have, and it knows of a maker of
this product, it sends an imperative message to that maker.

When such an imperative message is received by an agent, it can adopt a goal to make the
requested product (in the event module):

% process delivery requests.
forall (Machine).sent!(have(Product)) do adopt(delivered(Machine,Product)).

Note that we assume that we are only asked to make something that we actually can make here.

Status updates Once a product has been made for some other agent that requires it, that agent
should be informed that the required product is ready (in the main module). Agents in the Coffee
Domain do not ‘give’ each other products or perceive that products are available (remember that
we do not use an environment in this example), so they rely on communication to inform each
other about that.
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% if another machine needs a product and we have it, then deliver that product.
if goal(delivered(Machine, Product)), bel(have(Product))
then (Machine).send(have(Product)) + insert(delivered(Machine, Product)).

% process actual deliveries.
forall (Machine).sent(have(Product)) do insert(have(Product)).

On the receiving side of this message, reception of an indicative message have(Product)
does not automatically result in the belief by this agent that have(Product) is true. This
insertion of the belief must be done explicitly (in the event module).1

Pro-active inform In the Coffee World, we could be more pro-active by always informing all
other agents about what we can produce (or already have in stock). On one hand, this could
reduce the number of questions the agents have to ask each other. On the other hand, this could
lead to an increase in the number of unnecessary messages that are sent. For example, when we
would add a milk cow in this MAS (see the Exercises at the end of this Chapter), it does not need
to know about what the other agents can produce at all.

8.7 Notes
Additional concepts may be introduced to structure and design multi-agent systems. The idea is
that by imposing organizational structure on a multi-agent system specific coordination mecha-
nisms can be specified. Imposing an organizational structure onto a multi-agent system is viewed
by some as potentially reducing the autonomy of agents based on a perceived tension between
individual autonomy and compliance with constraints imposed by organizations. That is, in the
view of [12], an organization may restrict the actions permitted, which would have an immediate
impact on the autonomy of agents.

The “mailbox semantics” of Goal is very similar to the communication semantics of 2APL
[17]. Providing a formal semantics of communication has received some attention in agent-oriented
programming research. Some agent programming languages use middleware infrastructures such as
JADE [6], which aims to comply with the communication semantics of FIPA and related standards.
The FIPA standard introduced many primitive notions of agent communication called speech acts.
There are many different speech act types, however, which may vary for different platforms. In
practice, this variety of options may actually complicate developing agent programs more than
that it facilitates the task of writing good agent programs. We therefore think it makes sense to
restrict the set of communication primitives provided by an agent programming language. In this
respect we favor the approach taken by Jason which limits the set of communication primitives to
a core set. In contrast with Jason, we have preferred a set of primitives that allows communication
of declarative content only, in line with our aim to provide an agent programming language that
facilitates declarative programming.

8.8 Exercises
8.8.1 Milk cow
The coffee domain example from Section 8.1 has a coffee maker and a coffee grinder. Suppose we
now also want to make lattes. A latte is coffee with milk. To provide the milk, a cow joins the
scene. The cow is empathic enough that it makes milk whenever it believes that someone needs
it.

1This is where we make another leap of faith. The other agent indicated its belief in have(Product). The only
reason we copy this belief is because we trust that other agent.
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1. Expand the list of products the coffee maker can make with latte.

2. Add the knowledge that latte requires coffee and milk to that of the coffee maker.

3. Write a new agent that uses a module milkcow.mod2g which has the following properties:

(a) It does not do capability exploration, but it does answer other agent’s questions about
what it canProduce.

(b) When it notices that another agent needs milk, it will make the milk resulting in the
cow’s belief that have(milk).

(c) When it notices that another agent needs milk and the cow has milk, it will notify that
agent of that fact.



Chapter 9

The Design of Agent Programs

This chapter aims to provide some guidelines for developing agents in Goal. Although writing
an agent program typically will strongly depend on the application or environment that the agent
is expected to operate in, some general guidelines may still be given that help writing correct and
more elegant agent programs.

We also discuss how to structure and reuse parts of an agent program by means of importing
modules and other files. Using the possibility to distribute agent code over different files facilitates
a more structured approach to programming a multi-agent system. A MAS developer, however,
needs to take care that these different files that make up the multi-agent system do not conflict
with each other and we discuss some of the issues here.

9.1 Design Steps: Overview
As writing event and decision rules and action specifications requires that the predicates used
to describe an environment are known, it generally is a good idea to start with designing a
representation that may be used to describe the environment. This advice is in line with the
emphasis put on the analysis of the environment that an agent acts in as discussed at the end of
Chapter 6.

Generally speaking, it is important to first understand the environment. An environment
provides a good starting point as it determines which actions agents can perform and which
percepts agents will receive. In this early phase of development, it is important to create an initial
design of how to represent the environment logic, how to keep track of changes in the environment,
and how to represent goals the agent should set (see also Section 9.2.2 below). The result of this
analysis should be an initial design of an ontology for representing the agent’s environment.

We first introduce a generic approach for designing and developing a multi-agent system that
consists of a number of high-level steps that should be part of any sound code development plan
for a MAS.

1. Ontology Design

(a) Identify percepts
(b) Identify environment actions
(c) Design an ontology to represent the agent’s environment.
(d) Identify the goals of agents

2. Strategy Design

(a) Write event rules
(b) Write action specifications

94
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(c) Determine action selection strategy
(d) Write decision rules

Of course, it should be kept in mind that the steps that are part of this plan provide a rough
guideline only and in practice one may wish to deviate from the order and, most likely, one may
need to reiterate several steps.

The first part of this approach is probably the most important to get right. At the same time
it is important to realise that it is nearly impossible to get the design of an ontology right the first
time. Ontology design means designing the predicates (i.e., labels) that will be used to represent
and keep track of the agent’s environment, to set the agent’s goals, and to decide which actions
the agent should perform.

It is impossible to create an adequate ontology without a proper understanding of the environ-
ment, which explains the first two steps that are part of ontology design. More generally, in these
steps a programmer should gain proper knowledge of the environment. As a general guideline, it
is best to start introducing predicates that will be used to represent the agent’s environment and
will be part of the knowledge and belief base of the agent to keep track of what is the case in that
environment. Although in this phase it is useful to identify the goals an agent may adopt, the
actual code for managing goals typically consists of rules that are written as part of the strategy
design phase. The main purpose of identifying goals in the ontology design phase, however, is to
check whether the ontology supports expressing the goals an agent will adopt. A basic guideline
here is that you should never introduce special predicates that are used only for rep-
resenting goals. An agent can never come to believe that it has achieved a goal if predicates
are used only for representing goals. This indicates bad programming practice as an agent should
always, at least in principle, be able to believe a goal has been achieved.

9.2 Guidelines for Designing an Ontology
A key step in the development of an agent is the design of the domain knowledge, the concepts
needed to represent the agent’s environment in its knowledge, beliefs and the goals of the agent.

An important and distinguishing feature of the Goal language is that it allows for specifying
both the beliefs and goals of the agent declaratively. That is, both beliefs and goals specify what is
the case respectively what is desired, not how to achieve a goal. The main task of a programmer is
to make sure that Goal agents are provided with the right domain knowledge required to achieve
their goals. More concretely, this means writing the knowledge and goals using some declarative
knowledge representation technology and writing rules that provide the agent with the knowledge
when it is reasonable to choose a particular action to achieve a goal.

Although the Goal language assumes some knowledge representation technology is present, it
is not committed to any particular knowledge representation technology. In principle any choice
of technology that allows for declaratively specifying an agents beliefs and goals can be used. For
example, technologies such as SQL databases, expert systems, Prolog, and PDDL (a declarative
language used in planners extending ADL) can all be used. In this guide, we have used Prolog.
We assume the reader is familiar with Prolog and we refer for more information about Prolog to
[8] or [42]. Goal uses SWI Prolog; for a reference manual of SWI Prolog see [44].

9.2.1 Prolog as a Knowledge Representation Language
There are a number of things that need to be kept in mind when using Prolog to represent an
agent’s environment.

A first guideline is that it is best to avoid the use of the don’t care symbol “_" in
cognitive state queries. The don’t care symbol can be used without problems elsewhere and
can be used without problems within the scope of a bel operator, but in particular cannot be
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used within the scope of a goal-related operator such as the achievement goal operator a-goal
or the goal achieved operator goal-a.1

Second, it is important to understand that only a subset of all Prolog built-in predicates can
be used for writing an agent program. Check the documentation that is made available for Goal
for the list of operators that can be used.

Finally, we comment on a subtle difference between Prolog itself and Prolog used within the
context of an agent program. The difference concerns duplication of facts within Prolog. Whereas
in Prolog it is possible to duplicate facts, and, as a result, obtain the same answer (i.e., substitution)
more than once for a specific query, this is not possible in Goal. The reason is that Goal assumes
that an agent uses a theory which is a set of clauses, and not a database of clauses as in the Prolog
ISO sense (which allows for multiple occurrences of a clause in a database).

9.2.2 Knowledge, Beliefs, and Goals
The design of the knowledge, beliefs, and goals of an agent is best approached by the main
function of each of these agent components. Their functions are:

• knowledge: represent the environment or domain logic

• beliefs: represent the current and actual state of the environment

• goals: represent what the agent wants, i.e. the desired state of the environment

Useful concepts to represent and reason about the environment or domain the agent is dealing
with usually should be defined as knowledge. Examples are definitions of the concepts of
tower in the Blocks World or wumpusNotAt in the Wumpus World.

Use the beliefs of an agent to keep track of the things that change due to e.g. actions
performed or the presence of other agents. A typical example is keeping track of the position
of the entity that is controlled using e.g. a predicate at. Logical rules are should be used as
knowledge.

It is often tempting to define the logic of some of the goals the agent should pursue as
knowledge instead of as goals. This temptation should be resisted, however. Predicates
like priority or needItem with strong motivational connotations should not be used in as
knowledge. It is better practice to put goals to have a weapon or kill e.g. the Wumpus in the
goal base. One benefit of doing so is that these goals automatically disappear when they have
been achieved and no additional code is needed to keep track of goal achievement. Of course, it
may be useful to code some of the concepts needed to define a goal in the knowledge base of the
agent.

It is, moreover, better practice to insert declarative goals that denote a state the agent wants
to achieve into the goal base of the agent than predicates that start with verbs. For example,
instead of killWumpus adopt a goal such as wumpusIsDead.

To summarize the discussion above, the main guideline for designing a good ontology is:

Use predicate labels that are declarative.

In somewhat other words, this guideline advises to introduce predicates that describe a partic-
ular state and denote a particular fact. Good examples of descriptive predicates include predicates
such as at(_,_,_) which is used to represent where a particular entity is located and a predicate

1The reason why a don’t care symbol _ cannot be used within the scope of the a-goal and goal-a operators
is that these operators are defined as a conjunction of two mental atoms and we need variables to ensure answers
for both atoms are related properly. Recall that a-goal(φ) is defined by goal(φ), not(bel(φ)). We can
illustrate what goes wrong by instantiating φ with e.g. on(X,_). Now suppose that on(a,b) is the only goal of
the agent to put some block on top of another block and the agent believes that on(a,c) is the case. Clearly, we
would expect to be able to conclude that the agent has an achievement goal to put a on top of b. And, as expected,
the mental state condition a-goal(on(X,Y)) has X=a, Y=b as answer. The reader is invited to check, however,
that the condition a-goal(on(X,_) does not hold!
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such as have(Item) which is used to represent that an entity has a particular item. Descriptive
predicates are particularly useful for representing the facts that hold.

In contrast, labels that start with verbs such as getFlag are better avoided. Using such
labels often invites duplication of labels. That is, a label such as getFlag is used to represent
the activity of getting the flag and another label such as haveFlag then might be introduced to
represent the end result of the activity. Instead, by using the have(Item) predicate, the goal to
get the flag can be represented by adopting have(flag) and the result of having the flag can be
represented by inserting have(flag) into the belief base of the agent.

Check for and Remove Redundant Predicates Automatic support is available that provides
information about the use or lack of use of predicates in an agent program. Check out the user
manual to find out more about how and where this information is provided [31]. It is important to
check this feedback and remove any redundant predicates that are never really used by the agent.
Cleaning your code in this way increases readability and decreases the risk of introducing bugs.

9.3 Action Specifications
Actions that the agent can perform in an environment must be specified in an action specification
file (with extension act2g). Actions that have not been specified cannot be used by an agent.

9.3.1 Action Specifications Should Match with the Environment Action
An action specification consists of a pre-condition of the action and a post-condition. The pre-
condition should specify when the action can be performed in the environment. These conditions
should match with the actual conditions under which the action can be performed in the envi-
ronment. This means that an action pre-condition should be set to true only if the action can
always be performed. It also means that a pre-condition should not include conditions that are
more restrictive than those imposed by the environment. For example, the pre-condition of the
forward action in the Wumpus World should not have a condition that there is no pit in front of
the agent; even though this is highly undesirable, the environment allows an agent to step into a
pit. . . Conditions when to perform an action should be part of the decision rule(s) that select the
action.

Do not specify the forward action in the Wumpus World as follows:
define forward with
pre{ orientation(Dir), position(Xc, Yc), inFrontOf(Xc, Yc, Dir, X, Y),

pitNotAt(X, Y), wumpusNotAt(X,Y), not(wall(X, Y)) % ????
}
post{ not(position(Xc, Yc)), position(X,Y) }

Instead, provide e.g. the following specification:

define forward with
pre{ orientation(Dir), position(Xc, Yc), inFrontOf(Xc, Yc, Dir, X, Y) }
post{ not(position(Xc, Yc)), position(X,Y) }

9.3.2 Action Specifications for Non-Environment Actions
Actions that are included in the action specification of an agent program but are not made available
by the agent’s environment must add as internal as use case. That is, directly after the
declaration of the name of the action (and its parameters) you should write as internal.
Actions that are not internal actions of the Goal language itself are sent to the environment
for execution if the action specification does not indicate that the action should be treated as an
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internal action. If an environment does not recognize an action, it may throw an exception and
terminate the agent.

Note that in principle there is no reason for introducing specifications for actions that are not
available in the environment. Any action that is only used for modifying an agent’s state can also
be programmed using the insertand deleteactions.

9.4 Readability of Your Code
Goal is an agent oriented programming language based on the idea of using common sense notions
to structure and design agent programs. It has been designed to support common concepts such
as beliefs and goals, which allow a developer to specify a reason for performing an action. One
motivation for this style of programming stems from the fact that these notions are closer to our
own common sense intuitions. As such, a more intuitive programming style may result which is
based on these notions.

Even though such common sense concepts are useful for designing and structuring programs,
this does not mean that these programs are always easy to understand or are easy to “read” for
developers other than the person who wrote the code. Of course, after some time not having
looked at a particular piece of code that code may become even difficult to understand for its own
developer.

There are various ways, however, that Goal supports creating programs that are more easy to
read and understand. As in any programming language, it is possible to document code by means
of comments. As is well-known documentation is very important to be able to maintain code,
identify bugs, etc and this is true for Goal agent programs as well. A second method for creating
more accessible code is provided by macros. Macros provide a tool for introducing intuitive labels
for cognitive state queries and to use these macros instead of the cognitive state queries in the
code itself. A third method for creating more readable code is to properly structure code and
adhere to various patterns that we discuss at other places in this chapter.

9.4.1 Document Your Code: Add Comments!
Code that has not been documented properly is typically very hard to understand by other pro-
grammers. You will probably also have a hard time understanding some of your own code when
you have not recently looked at it. It therefore is common practice and well-advised to add com-
ments to your code to explain the logic. This advice is not specific to Goal but applies more
generically to any programming language. A comment is created simply by using the %
symbol at the start of a code line. It is also possible to use block comments using the start
/* and end */ separators.

There are some specific guidelines that can be given to add comments to a Goal program,
however. These guidelines consist of typical locations in an agent program where code comments
should be inserted. These locations include among others:

• just before a definition of a predicate in a KR file a comment should be inserted explaining
the meaning of the predicate,

• just before an action specification a comment may be introduced to explain the informal pre-
and post-conditions of the action (as specified in a manual for an environment, for example;
doing so allows others to check your specifications),

• at the start of a module file a comment should explain the purpose or role of the module,

• just before specific groups of rules a comment should explain the purpose of these rules.
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9.4.2 Introduce Intuitive Labels: Macros
Rules are used by an agent to select an action to perform. Writing rules therefore means providing
good reasons for performing the action. These reasons are captured or represented by means of
the cognitive state queries of a rule. Sometimes this means you need to write quite complicated
conditions. Macros can be used to introduce intuitive labels for complex cognitive state queries
and can be used in rules to enhance the readability and understandability of code. A macro thus
can be used to replace a cognitive state query in a rule by a more intuitive label.

An example of a macro definition that introduces the label constructiveMove(_,_) is:

define constructiveMove(X, Y) as
a-goal( tower([X, Y | T]) ), bel(tower([Y | T]), clear(Y), (clear(X) ; holding(X))).

Macros should be placed in the modules that use them, before the rules.

9.5 Structuring Your Code
Goal provides various options to structure your code. A key feature for structuring code are
modules (see Chapter 7). Another approach to structuring code is to group similar rules together.
It is often useful to group rules that belong together in a module. An example design guideline,
for example, is to put all rules which select environment actions in a module that is used as main
module.

9.5.1 All Modules Except for the Main Module Should Terminate
The only module that does not need to terminate is the main module. A module used as main
module will by default never be exited. This allows an agent to run, in principle, forever. All
other modules, including the init and event modules but especially the modules you introduce
yourself should terminate. Note that otherwise the module would never return to the top-level
main module which is considered bad practice.

9.5.2 Group Rules of Similar Type
When writing an agent program in Goal one typically has to write a number of different types
of rules. We have seen various examples of rule types in the previous chapters. We list a number
of rule types that often are used in agent programs and provide various guidelines for structuring
code that uses these different rules.

These guidelines are designed to improve understandability of agent programs. An important
benefit of using these guidelines in practice in a team of agent programmers is that each of the
programmers then is able to more easily locate various rules in an agent program. Structuring
code according to the guidelines facilitates other agent programmers in understanding the logic of
the code.

Decision Rules

Although we use the label decision rule generically, it is sometimes useful to reserve this label for
specific rules that select environment actions instead of rules that only select built-in actions. As
a general design guideline, decision rules should be placed inside a module that is used as main
module or in modules called from that module.

Percept Rules

A rule is a percept rule if its cognitive state query inspects the percept base of the agent and
only updates the cognitive state of the agent. That is, if the rule has a query that uses the



CHAPTER 9. THE DESIGN OF AGENT PROGRAMS 100

perceptoperator and only has actions that modify the cognitive state of the agent, that rule is
a percept rule. A percept rule, moreover, should be a forall...do... rule. Using this type
of rule ensures that all percepts of a specific form are processed. Of course, it remains up to
the agent programmer to make sure that all different percepts that an environment provides are
handled somehow by the agent.

As a design guideline, percept rules should be placed inside a module that is used as event
module. It is also best practice to put percept rules at the beginning of this module. It is important
to maintain a state that is as up-to-date as possible, which is achieved by first processing any
percepts when the event module is executed. For this reason, it best to avoid rules that generate
environment actions based upon inspecting the agent’s percept base. Performing environment
actions would introduce new changes in the environment and this may make it hard to update the
mental state of the agent such that it matches the environment’s state. Of course, percept rules
can also be put in other modules that are called from the event module again but this usually
does not introduce a significant benefit.

Note that there is one other place where it makes sense to put percept rules: in a module used
as init module. Percept rules placed inside such a module are executed only once, when the
agent is launched. Percept rules in this module can be used to process percepts that are provided
only once when the agent is created.

Communication Rules

There are various types of rules that can be classified as communication rules. A rule is a commu-
nication rule if its cognitive state query inspects the mailbox of the agent. That is, if the rule has
a condition that uses the sentoperator, that rule is a communication rule. A rule that selects a
communicative action such as send also is communication rule.

As a design guideline, communication rules that only update the cognitive state of the agent
should be placed directly after percept rules in an event module. Percepts usually provide more
accurate information than messages. It therefore always makes sense to first process perceptual
information in order to be able to check message content against perceptual information.

Goal Management Rules

Rules that modify the goal base by means of the built-in adopt and drop actions are called goal
management rules. These rules are best placed at the end of an event module, or possibly in a
module that is called there.

Goal management rules have two main functions, i.e. they should be used:

• Reconsideration: Drop goals that are no longer considered useful or feasible,

• Motivation: Adopt goals that the agent should pursue given the current circumstances.

Both types of rules are best ordered as above, i.e. first list rules that drop goals and thereafter
introduce rules for adopting goals. By clearly separating and ordering these rules this way, it is
most transparant for which reasons goals are dropped and for which reasons goals are adopted.

An agent program should not have rules that check whether a goal has been achieved. The
main mechanism for removing goals that have been achieved is based on the beliefs of the agent.
Goal automatically checks whether an agent believes that a goal has been achieved and removes
it from the agent’s goal base if that is the case. It is up to you to make sure that the agent will
believe it has achieved a goal if that is the case. By defining the ontology used by the agent in the
right way this should typically be handled more or less automatically.

Other Rule Types

The rules types that we discussed above assume that rules serve a single purpose. As a rule of
thumb, it is good practice to keep rules as simple as possible and use rules that only serve a single
purpose as this makes it more easy to understand what the agent will do. It will often, however,
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also be useful to combine multiple purposes into a single rule. A good example is a rule that
informs another agent that a particular action is performed by the agent when performing that
action. Such a rule is of the form if...then <envaction> + <comaction> that generates
options where first an environment action is performed and immediately thereafter a communica-
tive action is performed to inform another agent that an action has been performed. Another
example of a similar rule is a goal management rule of the form if...then <adoptaction>
+ <comaction> that informs other agents that the agent has adopted a particular goal (which
may imply that other agents can focus their resources on other things). Rules that only add such
communicative actions to keep other agents up-to-date are best located at the places suggested
above; i.e., one should expect to find a goal management rule that informs other agents as well at
the end of an event module.

How NOT to Use Rules

Rules are very generic and can be used to do pretty much anything. Their main purpose, however,
is to select actions and define an action selection strategy to handle events and to control the
environment. Rules should not be used to code some of the basic conceptual knowledge that the
agent needs. The knowledge representation language, e.g. Prolog, should be used for this purpose.
For example, you should not use a rule to insert into an agent’s belief base that the Wumpus is
not at a particular position; instead, the agent should use logic to derive such facts.

Do not use a rule for inserting that the Wumpus is not at a particular location, e.g. the
following code should be avoided:
forall not(percept(stench)),

bel( position(X, Y), adjacent(X,Y,Xadj,Yadj),
not(wumpusNotAt(Xadj,Yadj)) )

do insert( wumpusNotAt(Xadj,Yadj) ).

Instead, use a definition of the concept using several logical rules such as:

wumpusNotAt(X,Y) :- visited(X,Y).
wumpusNotAt(X,Y) :- ...

9.5.3 Small Modules
Small modules are to be preferred over modules with a large number of rules. By using more small
modules code becomes more readable. Modules are abstract actions and can be given intuitive
names to indicate what will happen when a module is executed. Smaller modules also facilitate
re-use. Finally, smaller modules are easier to maintain and test, a topic we will discuss in the next
chapter.

9.6 Notes
The guidelines discussed in this chapter are based in part on research reported in [27, 36].



Chapter 10

Automated Testing of Agents

Manual testing, using, for example, a debugger to identify differences between observed and in-
tended behaviour, is not the most efficient failure detection method. It also heavily relies on the
programmer to identify the failure and does not support performing the same test repeatedly.
The automated testing framework that we introduce in this chapter facilitates running tests
repeatedly at no additional costs. We also provide test templates for writing tests for specific
aspects of an agent program such as event processing and action selection.

10.1 Modules as Basic Unit for Testing
As is important for any other testing framework, it is important to identify what the unit that
will be tested should be. A testing framework for agent programs, for example, should not focus
on the knowledge that an agent uses. That would be reinventing the wheel as developers can
already use existing (unit) testing frameworks for the underlying KR technology used by an agent
program. For example, when using SWI Prolog, a developer should use the available unit testing
framework PlUnit [45] to test Prolog programs. Testing at the level of individual goals or rules is
too fine-grained and also not that useful. Writing tests for individual rules, for example, would
not only result in more test than source code, but even worse, would not focus on the failures that
need to be detected. A more suitable level is the aggregate level that collects multiple rules in a
single unit. We therefore focus on modules as units for testing.

Test conditions will evaluate conditions on the cognitive state of an agent. Test conditions will
be evaluated when a module is entered and when it is exited again. Entering a module when it
starts executing and exiting a module when module execution is finished provide two execution
points that are natural places for evaluating test conditions. As modules can be viewed as abstract
actions, these execution points can be viewed as the pre-condition and post-condition of a
module which are evaluated, respectively, when entering and when exiting the module. Different
from basic actions, however, is that we also want to evaluate tests while a module is executed.
To be able to evaluate a module’s behaviour, we therefore also use so-called in-conditions that
are evaluated while a module is executed. An in-condition is a property that is evaluated on the
execution run generated by a module. An execution run consists of a sequence of cognitive states
that the agent creates by performing updates on its state.

The pre-, post, and in-conditions allow the detection of failures that occur during module
execution. These conditions also provide better support for fault localization as a test indicates
the code location where a failure was detected (when debugging; also see the User Manual [31]).

10.2 Test Language
Tests are programs themselves that we write in a test language. The test language is built
on top of the Goal programming language and re-uses parts of that language. The language
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test := useclause+ [timeout] moduletest∗ agenttest+

useclause := use id [ascase] .
ascase := as (knowledge | actionspec | module | mas)
timeout := timeout = integer .
moduletest := test id with

[pre{ statecond }] [in { testcond+ }] [post{ statecond }]
statecond := stateliteral | stateliteral, statecond
stateliteral := stateatom | not(stateatom)
stateatom := stateop(qry) | done(action)
testcond := (always | never | eventually) statecond . |

statecond leadsto statecond .
agenttest := id (, id)∗ { testaction+ }
testaction := do(action | id) [until statecond] .
id := alphanumeral with underscores that starts with letter or underscore
stateop := bel | goal | a-goal | goal-a | percept | sent
qry := a valid KR query
action := a valid action of the programming language or environment

Table 10.1: Test Language Grammar

provides support for two main tasks: setting up a test and specifying which test conditions should
be evaluated. The grammar of the test language is specified in Table 10.1.

Test Conditions Test conditions are built on top of the cognitive state queries that are used in
program rules. A condition done(action) can be used to test whether some action has just been
performed. We call cognitive state queries and conditions of the form done(action) also state
conditions.

A test condition is a temporal condition that expresses that something should happen always,
never, eventually, or when some other condition has been true before. Test conditions are of the
form:

• always sc, which means that the state condition sc should continuously (always) hold
while executing a module.

• never sc, which means that the state condition sc should never hold while executing a
module.

• eventually sc, which means that the state condition sc should hold at least once during
the execution of a module.

• sc1 leadsto sc2, which means that whenever the state condition sc1 holds, some time
thereafter the state condition sc2 should hold.

The conditions always sc and never sc can be used to specify safety conditions, i.e., things
that always or never should occur. The conditions eventually sc and sc leadsto sc can
be used to specify liveness conditions, i.e., things that are supposed to occur sooner or later after
something else has happened. eventually sc is a shorthand for true leadsto sc.

Test Setup

A test needs to specify everything that is needed for the test. The first thing that is needed is a
MAS file. A MAS file is used to launch an environment, and to launch and connect agents to this
environment. As an example, we will test for a failure to handle ‘incomplete’ goals of our first
Blocks World agent. We need to include the MAS file for the Blocks World:
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use BlocksWorld as mas.

With out test we will show that something we want to happen eventually actually never
happens. Our agent should move a block in order to achieve its goal but does not do it. We thus
want our test to fail. But to show that something will never happen takes a long time. We will
instead be satisfied if our agent does not move the block within a window of 1 second. This is a
reasonable time window because the Blocks World agent is very fast and we will use a problem
with only 8 blocks. We can use a time out to ensure termination of the test after a specified
time. A time out is global and specifies how much time (in seconds) is allowed to pass before the
entire test should be completed. If a time out happens, the test is aborted. It is useful to note
that a test that is aborted does not always fail. A test that is aborted only fails if at least one
test condition failed (see below). We add a time out as follows:

timeout = 1.

Test Programs A test is a program that specifies what should be done. First, a test should
make clear which agents should take part in a test. Not all agents of a MAS have to be part of
a test. The agents that take part in a test need to be referenced explicitly in a test program by
naming them using their ids. These agents are launched when the test is started and automatically
connected to an environment, if available, to receive percepts from and perform actions in that
environment.

In a test we can also execute only part of an agent and even make the agent do things it would
not otherwise do. The latter is useful for modifying the cognitive state of an agent and prepare it
as desired for the test. Although we can execute the program code of an agent it does not need
to be executed. Instead, the testactions that are specified in an agenttest clause (see Table 10.1)
are performed when the test is run. Test actions can be preparatory actions do action for, e.g.,
initializing an agent’s state, where action can be a combo action that consists of one or more
actions that are available to the agent. Test actions can also be instructions do id to execute a
module with name id. We simply want the stackBuilder agent to execute as is, which we can
achieve by “doing” the stackBuilder module that is used as main module (the same name is
used to name the agent and the module used as main module):

stackBuilder {
do stackBuilder.

}

It is important to note that modules that are used as init or event modules will also be executed
like they usually would during agent cycles (see Figure 6.5).

An agent test can also be shared by multiple agents, by simply listing all agent names that
should perform the test actions separated by commas. By specifying multiple agent tests it is also
possible to define different actions for different agents, which will then be executed in parallel.

Finally, a condition until sc can be associated with a module (or an action but that is not
very useful) that terminates execution when the state condition sc holds. An agent test thus
determines which actions and modules are executed and when they should be terminated.

Tests for Modules The most important part of writing a test is specifying the conditions that
should be evaluated while executing a module. The conditions that should be evaluated when a
module is executed are specified by a test id with statement, where id is a module name. It is
possible to associate a pre-condition pre{sc}, a post-condition post{sc}, and an in-condition
in {tc+} with the module test. The pre-condition of a module is a state condition sc that
should hold when a module is entered (otherwise, the test fails). Similarly, a post-condition is a
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state condition sc that should hold when a module is exited. An in-condition tc is a temporal
test condition that specifies which behaviour is expected of a module while it is executed.

We want to check whether our Blocks World agent will move a block at some point in time
during the execution of its main module. More precisely, we want to know whether at some point
in time the agent will perform the action move(b8,X) where X can be any other block or the
table. We can use the eventually operator for this. As temporal conditions are specified as
in-conditions, and we want to evaluate the stackBuilder module, we get the following module
test:

test stackBuilder with
in { eventually done(move(b8,X)). }

Test Evaluation

By putting everything together, we get our first test. We need to add one use clause to indicate
that the module stackBuilder is used:

use BlocksWorld as mas.
use stackBuilder as module.
use bwmove as actionspec.

timeout = 1.

test stackBuilder with
in { eventually done(move(b8,X)). }

stackBuilder {
do stackBuilder.

}

Figure 10.1: Test whether Blocks World agent moves block 8

Because we do not want our agent to simply fail because there is no block 8, we moreover add
a block 8 that sits on top of block 1 to the MAS we developed in Figure 5.1:

use "blocksworld-1.1.0.jar" as environment with start=[2,3,0,5,0,7,0,1].

define stackBuilder as agent {
use stackBuilder as main module.

}

launchpolicy {
when * launch stackBuilder.

}

We do not change the goal of the agent, which we repeat here for completeness:

on(b1,b5), on(b2,table), on(b3,table), on(b4,b3), on(b5,b2), on(b6,b4), on(b7,table).

Note that this goal does not include block 8.
A run or trace of an agent program consists of a (finite or potentially infinite) sequence of

cognitive states of the agent. Test conditions associated with a module are evaluated on (partial)
traces generated by that module. These conditions are assigned one of three values: undetermined,
passed, or failed. Initially, all test conditions of a module have the value undetermined. The pre-
condition of a module, if specified, is evaluated on the current state when entering the module and
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assigned passed when the condition succeeds, and failed otherwise. Similarly, the post-condition
is evaluated on the current state when a module is exited. The value of an in-condition is (re-
)evaluated every time the cognitive state of the agent changes while the module is being executed.
The temporal operator of the condition determines whether and how the value is updated:

• always sc: the value is changed to failed if sc does not hold in the cognitive state in
which the condition is evaluated; the value is changed to passed if the test is terminated and
the value still is undetermined; otherwise, its value remains undetermined.

• never sc: the value is changed to failed if sc holds in the state; the value is changed to
passed if the module (or test) is terminated and the value still is undetermined; otherwise,
its value remains undetermined.

• eventually sc: the value is changed to passed if sc holds in the cognitive state in which
the condition is evaluated; the value is changed to failed if the test is terminated and the
value still is undetermined; otherwise, its value remains undetermined.

• sc1 leadsto sc2: if the module (or test) is terminated, the value is changed to passed if
every state where sc1 holds has been followed by a state where sc2 holds (and vacuously
so if sc1 did never hold); otherwise, the value is changed to failed. If the module (or test)
has not been terminated yet, the value is undetermined.

A test is aborted as soon as a condition is assigned the value failed. In that case, the entire
test is regarded as failed, indicating that something needs to be fixed. Note that when a test is
terminated (whether aborted or not), all conditions will have been assigned the value passed or
failed. If a test is terminated because of a time out, this does not always imply that the test is a
failure; if all conditions are passed, the test is considered to have passed as well.

Now it is time to run our test. We refer to the User Manual for instructions on how to do this
[31]. You should get output that looks like:

[stackBuilder] +++++++ Cycle 628 +++++++
[stackBuilder] ’stackBuilder’ did not complete successfully during the

test of agent ’stackBuilder’ because: In-condition(s) failed: [
’eventually done(move(b8, X))’ with []].

test failed:
test: ...\BlocksWorld2Agents\incompleteGoal.test2g
mas: ...\BlocksWorld2Agents\BlocksWorld.mas2g
’stackBuilder’ did not complete successfully during the test of
agent ’stackBuilder’
because: In-condition(s) failed: [
’eventually done(move(b8, X))’ with []].

We have identified a failure in our program. The agent never moves block 8 (at least not within
the 1 second window that we used).

10.3 Test Templates
Test templates facilitate writing tests. Test templates also help increase the coverage of aspects
that need testing. We introduce test templates for all aspects of an agent program. The test
templates are split into three main categories: templates for percepts with labels that start with
P, templates for goals with labels that start with G, and templates for actions with labels that
start with A. We briefly introduce the templates here and discuss how to use them in the next
section.
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10.3.1 P-templates: Failures in Percept Processing
In order to support various options for percept processing, we distinguish between the four percept
types and associate specific test templates with each type, based on the assumption that the
percept information needs to be made persistent in the agent’s belief state one-to-one. Test
conditions for percepts should be associated with the module that processes the percept. This is
usually a module used as either init or event module. This ensures the templates are evaluated
while percept are processed in the module. Because the event module is executed once each cycle
of the agent, in order to not violate the test conditions, percepts must have been processed and
beliefs updated accordingly at the end of that module.

Template P-once : concerns percepts p that are only received once, typically when the agent is
launched to inform about static information such as locations on maps. The test template expects
that after receiving the percept, it will be made persistent such that the agent believes it. This
templates should be associated with a module used as as init module.

percept(p) leadsto bel(p)

Template P-always : concerns percepts about facts p that are always received when p is true.
This also implies that if such a percept is not received that p does not hold. The test template
therefore consists of two test conditions. The first is the same as the condition of the P-once
template. The second condition says that when p is not perceived, which indicates that p does
not hold, a belief p should be removed (if present).

percept(p) leadsto bel(p)
not(percept(p)), bel(p) leadsto not(bel(p))

Template P-on-change : concerns percepts p(t⃗) that are sent only when the parameters t⃗ of
a percept p change. A percept loc(place), for example, might be sent only when an agent’s
location changes.

percept(p(t⃗)) leadsto bel(p(t⃗))
percept(p(s⃗)), bel(p(t⃗), not(s⃗ = t⃗)) leadsto not(bel(p(t⃗))

10.3.2 G-templates: Failures in Goal Management
There are five failure templates that concern the management of goals. Each of these categories,
with the exception of G4, suggests that a reason for (not) having a goal has not been adequately
taken into account.

Template G-adopted (G1) : concerns a goal p that the agent should adopt because of some
reason sc. If the agent does not adopt the goal when the reason holds, this template will identify
the failure.

sc leadsto goal(p)

Template G-reconsideration (G2) : concerns a goal p that should be reconsidered and
dropped for reason sc. If an agent does not drop the goal when sc holds, a failure to drop a goal
that should be dropped is identified. The agent did not adequately reconsider the goals that it
has.
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sc leadsto not(goal(p))

An agent would normally reconsider its goals if the environment has changed outside the control
of that agent. Failures of this type would therefore most likely only occur in dynamic environments
or in a multi-agent context.

Template G-incorrect (G3) : concerns a situation in which there is a reason sc for not
adopting or having a goal. This template can be viewed as the counterpart of the template
G-adopted. Instead of a liveness (leadsto) condition we use a a safety (never) condition here.

never goal(p), sc

Template G-duplicate (G4) : concerns a single-instance goal that should be instantiated at
most once. Some goals should only occur once and it should never be the case that the goal is
instantiated twice (see also 6.8.1). For example, an agent might have a goal in(’RoomA1’) of
visiting a room but should never have another goal of the same form, e.g., in(’RoomB1’), at
the same time.

never goal(p(s⃗)), goal(p(t⃗)), not(bel(s⃗ = t⃗))

Template G-maintain (G5) : concerns a situation in which sc is a reason why an agent
should have a goal p, and should maintain it for that reason. This template can be viewed as
the counterpart of template G-reconsideration that requires an agent to reconsider, i.e. to not
maintain a goal.

never not(goal(p)), sc

10.3.3 A-templates: Failures in Action Selection
The final two templates concern failures in the action select strategy of an agent. An agent may
have a reason to perform an action but not do so, or, vice versa, may have a reason to not perform
an action but do so nevertheless.

Template A-selected (A1) : concerns an action action that the agent is should select because
of reason sc. Failure to meet this test condition suggests that some reason for selecting an action
has not been adequately taken into account.

sc leadsto done(action)

Template A-incorrect (A2) : concerns a situation sc in which an action action should
never have been selected. A failure to meet the test condition suggests that something happened
that should never have happened. This template can be viewed as the counterpart of previous
template.

never(done(action)), sc
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10.4 Test Approach
The test templates provide a useful starting point for writing tests. They facilitate a structured
approach to testing an agent. Here we introduce a systematic test approach that consists of a
number of concrete steps. The main steps of this approach are:

1. define success in terms of functional requirements,

2. test cognitive state updating, and

3. classify failures that concern actions and goals.

We also provide guidelines for instantiating the templates for a specific application. These guide-
lines suggest ways, for example, for finding specific reasons for instantiating the state conditions
sc that need to be filled in in the G- and A-templates. For this purpose, it is important to be
able to retrieve relevant information from the sources that we have available. Table 10.2 lists
information resources that are particularly useful for writing tests.

Source Type of Information
Agent program (comments) Clues for reasons & design
Agent trace (screen, logs) Observable behaviour
Agent design & specification Functional requirements
Environment (documentation) Percepts, actions available

Table 10.2: Information sources for testing

Step 1: Defining Success

The first step is to identify functional requirements from available agent design documentation
(Table 10.2). These requirements define success and provide a concrete method for checking that
a program does what it is supposed to do. A program can be considered free of failures if it meets
requirements.

In order to automatically check this, functional requirements must also be specified in the test
language. Typically, these requirements will be associated with a module modname that is used
as main module. We can specify functional requirements as the pre-, post-, or in-conditions of
this module using test modname with statements, or by adding a test action of the form do
modname until sc.

Using a test action is particularly useful for checking that some overall objective sc is realized.
If the objective is achieved, the test action will be automatically terminated. A timeout should
be specified to guarantee termination in case sc would never occur. For example, the requirement
or objective to pickup and deliver a sequence of packages [p1,...,pn] can be specified by do
modname until bel(delivered([p1,...,pn])).

Step 2: Testing Cognitive State Updating

What an agent decides to do depends to a large extent on the content of its cognitive state. Test
conditions also depend on the evaluation of state conditions on the cognitive state of an agent. If
these state conditions incorrectly succeed or fail because the updating of the state of an agent has
not been implemented correctly, tests will also very likely fail for unclear reasons. For example, a
condition never done(putDown),not(bel(in(Room))), which says that a package should
never be put down when not in a room, could fail just because the beliefs about in(Room) are
not updated correctly. It is therefore important to first make sure that the updating of an agent’s
state works as expected.
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Identify the Percepts, Actions, and Goals used in a MAS As a preparatory step, it is
useful to create an ontology of and collect all percepts, including their type (once, etc.), that
may be received and the actions that may be performed from environment documentation (Table
10.2). Similarly, all goals that an agent may have should be collected from the agent program
code and added to the ontology.

Validating Percept Processing The first step now is to instantiate the appropriate test tem-
plates P-once, etc. for each percept based on their type. The resulting test conditions should be
associated as in-conditions with the module(s) used for percept processing module. Tests should be
repeated sufficiently often as percepts generated will differ per run, if only because environments
are more often than not non-deterministic. To gain confidence that percepts are correctly handled,
it is important to check against the list of actions created above whether a sufficient variation of
actions has been performed during runs, as different actions often yield other percepts.

Check Single-Instance Goals Based on program design, and intended use of goals in com-
ments in a program (Table 10.2), for example, and using the overview of goals in the ontology, the
subset of goals that are single-instance goals should be identified. For each of these goals, the test
template G-duplicate should be instantiated and associated as an in-condition with the module
where the goal is adopted.

If these initial tests succeed, this will give a high level of confidence that cognitive states are
updated correctly.

Step 3: Classifying Failures

Instantiating the remaining template types requires some understanding of the program design
and the agent’s behaviour in order to be able to instantiate the required state conditions sc.

Action Failures For identifying action related failures, A-templates should be instantiated with
actions and a state condition needs to be identified that provides a reason, i.e. a state condition
sc, for (not) selecting it. For the template A-selected (respectively, A-incorrect), the question is
in which situations sc an action should (never) be executed. The instantiated conditions should
be associated as in-conditions with the module(s) where the action might (not) be selected. There
are two basic approaches for identifying the conditions sc:

1. By inspecting the agent program, clues may be obtained for useful state conditions sc. In
particular, the conditions of rules can be useful, as they typically indicate reasons for selecting
an action. For example, a condition bel(in(’DropZone’), holding(Block)) that
triggers execution of an action putDown suggests that an agent should execute putDown
when it is holding a block in the ’DropZone’. By simply using this condition for sc, we
can instantiate template A-selected as follows:

bel(in(’DropZone’), holding(Block)) leadsto done(putDown).

This approach is able to detect failures, e.g., in case the rule order prevents the rule for
putDown from ever being applied. Similarly, by negating conditions found in a program,
we can find useful conditions for instantiating A-incorrect. It is important to note that this
works only if the condition used must hold if the action is selected. This is not always the
case but when it can be assumed this approach provides a useful starting point. Moreover,
you can consider how weakened or strengthened variants of conditions used in program rules
can be used in test conditions.

2. If an action failure is suspected because, for example, a functional requirement is not satisfied,
observing an agent’s behaviour may provide clues for identifying a useful condition sc for
instantiating a test template for that action. Suppose that a requirement bel(in(Room))
leadsto not(bel(in(Room))) formulated in step 1 fails. That is, an agent does not
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always leave a room after entering it. If we now observe that the goTo action is never
performed, we can conclude that we have identified a failure to select this action. To confirm
this by a test, we can use the template A-selected and instantiate sc with the reason for
leaving and action with the goTo action. This would give:

bel(in(Room), not(Room=OtherRoom)) leadsto done(goTo(OtherRoom))

We can repeat this line of reasoning until a root cause for the failure has been identified.

Goal Failures The approach for instantiating G-templates, apart from identifying the goal that
might cause the failure, is similar to that for A-templates. The questions that you should ask for
each of the templates are:

• G-adopted: for which sc should a goal p be added?

• G-reconsideration: for which sc should a goal p be dropped?

• G-incorrect: for which sc should a goal p never be added?

• G-maintain: for which sc should a goal p never be removed?

The instantiated conditions should be associated as in-conditions with the module(s) that are
related to the goal.

As an example, we create a test for a goal in(Room). We assume that this goal is adopted
by a rule with the following condition: bel(room(Place)), not(bel(visited(Place))).
This condition suggests that the agent should adopt (multiple) in(Room) goals for each room
that it has not visited before. By using the goal and this condition for sc to instantiate the
template G-adopted, we get:

bel(room(Place)), not(bel(visited(Place))) leadsto goal(in(Place))

This rather straightforward approach of re-using rule conditions can already provide an effective
method for detecting failures, e.g., in case the rule order prevents the rule from ever being applied.
Similarly, the negations of conditions found in a program can sometimes be used to instantiate
the template G-incorrect to obtain useful test conditions. This approach for instantiating G-
incorrect only works if the condition must hold whenever the goal is adopted, e.g., if an agent
never wants to go to rooms it has visited before. A similar approach can be used for the templates
G-reconsideration and G-maintain.

10.5 Debugging, Testing, and Fault Localisation
It is important to realize that how agents are executed can make a difference. For example,
agents that are executed using the automated testing framework are never paused. Debugging
agents with a debugger by pausing and/or stepping a program may result in agent behaviour
that is quite different from an agent that is executed without pausing it. Moreover, each run
can produce different behaviour (and thus failures) because of non-determinism in the agent (e.g.,
due to random rule order evaluation), the environment, or executing multiple agents. You should
therefore always run the same tests multiple times in different scenarios to gain assurance that
the agents work as expected.

When a failure is detected, i.e., a test fails, the fault must be located. The program location
where the agent is at when the test failed is indicated by the testing framework. Although it is
often the case, it is not always true that this location also is the fault location, i.e., the place
of the actual error in the code. If the fault is not located immediately additional debugging is
needed using a debugger (see the User Manual [31]). In particular, faults related to actions that
are performed but should not have been performed are usually more difficult to locate.
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10.6 Notes
The automated testing framework was first developed and reported on in [30].
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